

Ť ____

IX

Inhaltsverzeichnis

Vorwort V

Literatur 19

Zum Aufbau des Buches VII

Teil I Optimierungsstrategien für einzelne Fragestellungen 1

1	2D-HPLC – Methodenentwicklung für erfolgreiche Trennungen 3
	Dwight R. Stoll
1.1	Motivationen für zweidimensionale Trennung 3
1.1.1	Schwierig zu trennende Proben 3
1.1.2	Komplexe Proben 4
1.1.3	Ziel der Trennung 4
1.2	Auswahl des zweidimensionalen Trennungsmodus 4
1.2.1	Das Analyseziel bestimmt den Modus 5
1.2.2	Gegenüberstellung der vier Modi für 2D-Trennungen 6
1.2.3	Hybride Modi bieten Flexibilität 7
1.3	Wahl der Trennmodi 8
1.3.1	Komplementarität als Leitmotiv 8
1.3.2	Die Pirok-Kompatibilitätstabelle 9
1.3.3	Bestimmung der Komplementarität von Trennungen 11
1.4	Auswahl der Trennungsbedingungen 12
1.4.1	Mit Vorgabe feststehende Bedingungen in der ersten Dimension 12
1.4.2	Bei null anfangen – flexible Bedingungen in der ersten Dimension 1
1.4.3	Besonderheiten bei umfassenden 2D-LC-Methoden 14
1.4.4	Faustregeln 14
1.5	Beispiele für die Methodenentwicklung 15
1.5.1	Beispiel Nr. 1 – Verwendung von LC-LC zur Identifizierung einer
	Verunreinigung in einem synthetischen Oligonukleotid 15
1.5.2	Beispiel Nr. 2 – umfassende 2D-LC-Trennung von Tensiden 16
16	Aushlick 18

28

X	Inhaltsverzeichnis

2	Do you HILIC? Mit Massenspektrometrie? Dann bitte systematisch 23 Thomas Letzel
2.1	Ausgangssituation und optimale Nutzung von stationären HILIC-Phasen 26
2.2	Ausgangssituation und optimale Nutzung von mobiler HILIC-Phase
2.3	Weitere Einstellungen bzw. Bedingungen speziell für massenspektrometrische Detektion (siehe auch Kap. 3) 35 Literatur 36
3	Optimierungsstrategien in der LC-MS-Methodenentwicklung 39 Markus M. Martin
3.1	Einführung 39
3.2	Methodenneuentwicklung für HPLC-MS-Trennungen 39
3.2.1	Optimierung der LC-Trennung 40
3.2.2	Optimierung der Ionenquellenbedingungen 45
3.2.3	Optimierung der MS-Detektion 47
3.2.4	Überprüfung der Komplettmethode 48
3.2.5	Unterstützung bei der Methodenentwicklung durch softwaregestützte
	Parametervariation 50
3.3	Übertragen von HPLC-Bestandsmethoden
	an die Massenspektrometrie 51
3.3.1	Übertragung einer vollständigen HPLC-Methode
	an ein Massenspektrometer 52
3.3.2	Selektierte Analyse einer unbekannten Verunreinigung –
	Lösemittelwechsel mittels Single-/Multi-Heartcut-Technologien 53
3.4	Abkürzungen 55
	Literatur 56
4	Strategien für die erfolgreiche Charakterisierung von Protein-
	biopharmazeutika 57
4.1	Szabolcs Fekete, Valentina D'Atri und Davy Guillarme
4.1	Einführung in Proteinbiopharmazeutika 57
4.2	Von der Standard- zur Hochleistungschromatographie von Proteinbiopharmazeutika 58
4.3	Online-Kopplung von nicht denaturierenden LC-Modi mit MS 62
4.4	Mehrdimensionale LC-Ansätze für Proteinbiopharmazeutika 63
4.5	Schlussfolgerung und Zukunftstrends in der Analyse
	von Proteinbiopharmazeutika 66
	Literatur 68
5	Optimierungsstrategien für die HPLC-Trennung von Biomolekülen 73
	Lisa Strasser, Florian Füssl und Jonathan Bones
5.1	Einleitung 73
5.2	Optimierung der chromatographischen Trennung 73
5.3	Optimierung der Geschwindigkeit einer HPLC-Trennung 78
5.4	Optimierung der Sensitivität einer HPLC-Trennung 80

ichnis **XI**

_	_		
	,	•	

	Inhaltsverzeich
5.5	Multidimensionale Trennungen (siehe auch Kap. 1) 81
5.6	Überlegungen bezüglich MS-Detektion (siehe auch Kap. 3) 82
5.7	Schlussfolgerungen und Ausblick 84
	Literatur 85
5	Optimierungsstrategien in der Supercritical Fluid Chromatography
	(SFC) mit gepackten Säulen 87
. 1	Caroline West
5.1	Auswahl einer stationären Phase, die eine angemessene Retention und gewünschte Selektivität ermöglicht 88
5.1.1	Auswahl einer stationären Phase für chirale Trennungen (siehe auch Kap. 7) 88
5.1.2	Auswahl einer stationären Phase für achirale Trennungen 90
5.2	Optimierung der mobilen Phase zur Elution aller Analyten 93
5.2.1	Art des Co-Lösungsmittels 93
5.2.2	Anteil an Co-Lösungsmittel 94
5.2.3	Verwendung von Additiven 97
5.2.4	Probenverdünner 98
5.3	Optimierung von Temperatur, Druck und Flussrate 98
5.3.1	Auswirkungen von Temperatur, Druck und Flussrate
	auf das Chromatogramm 98
5.3.2	Gleichzeitige Optimierung von Temperatur, Druck und Flussrate 100
5.4	Überlegungen zur SFC-MS-Kopplung 101
5.5	Zusammenfassung der Methodenoptimierung 102
5.6	SFC als zweite Dimension in der zweidimensionalen
	Chromatographie 104
5.7	Weiterführende Literatur 104
	Literatur 104
7	Optimierungsstrategien für chirale Trennungen 107
	Markus Juza
7.1	Enantioselektive (Chirale) Trennungen 107
7.2	Wie fängt man an? 109
7.2.1	Partikelgröße 109
7.2.2	Chirale Polysaccharid-stationäre Phasen als erste Wahl 110
7.2.3	Screening von gecoateten und immobilisierten Polysaccharid-CSPs
	im Normalphasen- und polar organischem Modus 114
7.2.4	Screening von gecoateten und immobilisierten Polysaccharid-CSPs
	im Umkehrphasenmodus 118
7.2.5	Screening von immobilisierten Polysaccharid-CSPs im mittlerer
726	Polaritäts-modus 120
7.2.6	Screening von gecoateten und immobilisierten Polysaccharid-CSPs
7 7 7	unter polaren organischen SFC-Bedingungen 122
7.2.7	Screening von immobilisierten Polysaccharid CSPs unter mittelpolaren

7.2.7

7.3

SFC Bedingungen 125

SFC zuerst? 129

 $-\blacksquare$

F T---

Τ .

XII	Inhaltsverzeichnis
-----	--------------------

7.4	Gibt es Regeln, wie man die vorhersagen kann, welche CSP für mein
	Trennproblem geeignet ist? 129
7.5	Welches sind die am erfolgversprechendsten CSPs? 129
7.6	Kann man CSPS miteinander vergleichen? 131

- 7.7 "No-Gos", Fallstricke und Besonderheiten bei der chiralen HPLC und SFC 134
- 7.8 Gradienten in der chiralen Chromatographie 135
- 7.9 Alternative Strategien zur chiralen HPLC und SFC auf Polysaccharid-CSPs 135
- 7.10 Wie löse ich Trennprobleme für Enantiomere, ohne ins Labor zu gehen? 138
- 7.11 Die Zukunft der chiralen Trennung schnelle chirale Trennung (cUHPLC und cSFC)? 139

 Literatur 141

8 Optimierungsstrategien basierend auf der chemischen Struktur der Analyte 145

Christoph A. Fleckenstein

- 8.1 Einleitung 145
- 8.2 Der Einfluss funktioneller Gruppen 147
- 8.3 Wasserstoffbrückenbindungen 149
- 8.4 Einfluss der Wasserlöslichkeit durch Hydratbildung bei Aldehyden und Ketonen 151
- 8.5 Bedeutet polar gleich hydrophil? 152
- 8.6 Peroxidbildung bei Ethern 154
- 8.7 Der pH-Wert in der HPLC 156
- 8.7.1 Saure funktionelle Gruppen 157
- 8.7.2 Basische funktionelle Gruppen 158
- 8.8 Betrachtungen und Löslichkeitsabschätzungen in komplexeren Molekülen 159
- 8.9 Der Octanol-Wasser-Koeffizient 161
- 8.10 Hansen-Löslichkeitsparameter *165*
- 8.11 Fazit und Ausblick *167* Literatur *168*

9 Optimierungsmöglichkeiten im regulierten Umfeld 171

Stavros Kromidas

- 9.1 Einführung 171
- 9.2 Vorbemerkung 171
- 9.3 Auflösung 173
- 9.3.1 Hardwareänderungen 174
- 9.3.2 Verbesserung der Peakform 175
- 9.4 Peak/Rauschen-Verhältnis 178
- 9.4.1 Verringerung des Rauschens 178
- 9.5 Variationskoeffizient, V_k 178 Literatur 182

H

Inhaltsverzeichnis XIII

Teil II	Computero	estützte	Strategien	(in-silico-Anwendungen)	183

10	Strategie zur automatisierten Entwicklung von RP-HPLC-Methoden für die domänenspezifische Charakterisierung monoklonaler Antikörper 1 Jennifer La, Mark Condina, Leexin Chong, Craig Kyngdon, Matthias Zimmermann und Sergey Galushko	185
10.1	Zielsetzung 185	
10.2	Einführung 185	
10.3	Automatisierte Methodenentwicklung und Software-Tools 187	
10.4	Wechselwirkung mit Instrumenten 188	
10.5	Säulen 189	
10.6	Probenvorbereitung und HPLC-Analyse 190	
10.7	Automatisierte Methodenentwicklung 191	
10.8	Säulen-Screening 193	
10.9	Schnelle Optimierung 193	
10.10	Feinoptimierung und Proben-Profiling 195	
10.11	Robustheitstests 196	
10.11.1	Auswahl der Variablen 197	
10.11.2	Auswahl des Versuchsplans 198	
10.11.3	Festlegung der Bereiche für die verschiedenen Faktoren 198	
10.11.4	Erstellung der Versuchsanordnung 199	
10.11.5	Durchführung von Experimenten 199	
10.11.6	Berechnung von Effekten und Auswirkung sowie numerische und grafische Analyse der Effekte 200	
10.12	Verbesserung der Methode 203	
10.13	Schlussfolgerungen 203	
	Literatur 204	
11	Fusion QbD [®] Software: ICH-konformes Lebenszyklus-Management für analytische Methoden: Entwicklung, Validierung, Transfer 207 Richard Verseput und Ingo Green	
11.1	Einführung 207	
11.2	Übersicht – experimentelles Design und Datenmodellierung	
	in Fusion QbD 209	
11.3	Zielprofil einer analytischen Methode 210	
11.4	APLM-Stadium 1 – Entwurf und Entwicklung des Verfahrens 211	
11.4.1	Voruntersuchung 211	
11.4.2	Screening des chemischen Systems 213	
11.4.3	Methodenoptimierung 217	
11.5	APLM-Stadium-2 – Verifizierung der Methodenleistung 224	
11.5.1	Replikationsstrategie 224	
11.5.2	USP (1210) Toleranzintervall zur Unterstützung	
	von Methodentransfers 224	
11.6	Was folgt? – Erwartungen für 2020 und darüber hinaus 226 Literatur 228	

#

\ —<u>—</u>

Ieil III	Anwender berichten	229

12	Moderne HPLC-Methodenentwicklung 231 Stefan Lamotte	
12.1	Robuste Ansätze für die Praxis 233	
12.1.1	Die maximale Peakkapazität 240	
12.2	Ausblick 241	
	Literatur 241	
13	Optimierungsstrategien in der HPLC aus Sicht	
	eines Industriedienstleisters 243	
	Juri Leonhardt und Michael Haustein	
13.1	Einleitung 243	
13.2	Forschung und Entwicklung 244	
13.3	Qualitätskontrolle 244	
13.4	Prozessbegleitende Analytik 245	
13.5	Entscheidungsbaum zur Optimierungsstrategie in Abhängigkeit	
	vom späteren Einsatzgebiet 248	
14	Optimierungsstrategien in der HPLC aus Sicht eines Dienstleisters –	
	der UNTIE [®] -Prozess der CUP-Laboratorien 249	
	Dirk Freitag-Stechl und Melanie Janich	
14.1	Übliche Herausforderungen für einen Dienstleister 249	
14.2	Ein typisches, langwieriges Projekt – wie es meistens läuft	
	und wie man es nicht machen sollte! 250	
14.3	Wie machen wir es besser? – Der UNTIE®-Prozess	
	der CUP-Laboratorien 251	
14.3.1	Die Kundenbedürfnisse verstehen 251	
14.3.2	Der Test einer existierenden Methode 252	
14.3.3	Methodenentwicklung und -optimierung 253	
14.3.4	Durchführung der Validierung 255	
14.3.5	Zusammenfassung 256	
	Literatur 257	
15	Optimierungsstrategien in der HPLC 259 Bernhard Burn	
15.1	Definition der Aufgabestellung 260	
15.2	Relevante Daten für die HPLC-Analyse einer Substanz 262	
15.2.1	Löslichkeit 262	
15.2.2	Säure Konstanten (p K_S) 265	
15.2.3	Octanol-Wasser-Verteilungskoeffizient 273	
15.2.4	UV-Absorption 275	
15.2.5	Stabilität des gelösten Analyten 277	
15.3	Generische Methoden 282	
15.3.1	Generelle Methode für die Analyse pharmazeutischer Wirkstoffe	282

Inho

altsverzi		

15.3.2	Erweiterungen des Einsatzbereiches	284
15.3.3	Grenzen dieser generellen Methode	284
15.3.4	Beispiel, Bestimmung von Butamirate	lihydrogencitrat
	in einem Hustensirup 286	

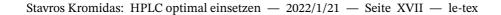
- Generelle Tipps zum Optimieren von HPLC-Methoden 288 15.4
- 15.4.1 Herstellen von mobilen Phasen 288
- 15.4.2 Blankproben 290
- Festlegen von Messwellenlängen für die UV-Detektion 291 15.4.3
- UV-Detektion bei niedrigen Wellenlängen 293 15.4.4
- 15.4.5 Vermeidung von Peaktailing 298
- 15.4.6 Messunsicherheit und Methodendesign 303
- 15.5 Säulendimension und Partikelgrößen 306 Literatur 308

Teil IV Hersteller berichten 309

16	Optimierungsstrategien für Ihre HPLC – Agilent Technologies	311
	Jens Trafkowski	

- 16.1 Erhöhung der Trennleistung: Zero Dead Volume Fittings 312
- 16.2 Trennleistung: Minimierung der Dispersion 312
- 16.3 Erhöhung des Durchsatzes – verschiedene Wege zur Senkung der Analysenlaufzeit 313
- 16.4 Minimale Verschleppung für die Spurenanalytik: Multiwash 315
- 16.5 Steigern Sie die Leistung Ihrer vorhandenen Systeme – modular oder schrittweise Aufrüstung bestehender Systeme 315
- 16.6 Erhöhen Sie Automatisierung, Benutzerfreundlichkeit und Reproduzierbarkeit mit den Merkmalen einer quaternären High-End-UHPLC-Pumpe 317
- Automatisierung erhöhen: Lassen Sie Ihren Autosampler die Arbeit 16.7
- 16.8 System für mehrere Anwendungen: Multimethodenund Methodenentwicklungssysteme 320
- 16.9 Kombinieren Sie Probenvorbereitung mit LC-Analyse: Online SPE 321
- 16.10 Leistungssteigerung mit einer zweiten chromatographischen Dimension: 2D-LC (siehe auch Kap. 1) 322
- Think different! Verwenden Sie überkritisches ${\rm CO_2}$ als Eluent: 16.11 SFC – Supercritical Fluid Chromatography (siehe auch Kap. 6) 323
- 16.12 Bestimmen Sie verschiedene Konzentrationsbereiche in einem System: hochauflösende Bereichs-HPLC (HDR) 324
- 16.13 Automatisieren Sie sogar Ihren Methodentransfer von anderen LC-Systemen: Intelligent System Emulation Technology (ISET) 325
- Zusammenfassung und Schlussfolgerung 326 16.14 Literatur 327

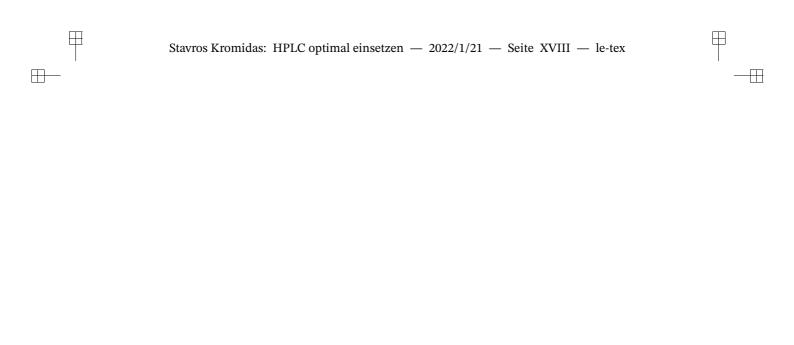
F F


† —⊞

XVI	Inhaltsverzeichni

17	Den Anwender starkmachen – Optimierung durch Individualisierung 329
	Kristin Folmert und Kathryn Monks
17.1	Einleitung 329
17.2	Die eigenen Anforderungen definieren 329
17.2.1	Lastenheft, Zeitplan oder Maßnahmenkatalog 329
17.2.2	Personaloptimierungen helfen, die HPLC besser zu nutzen 331
17.2.3	Zeitintensive Methodenoptimierungen planvoll meistern 332
17.2.4	Optimierungen auf Geräteebene müssen nicht immer eine Investition bedeuten 332
17.3	Ein Assistent eröffnet viele neue Möglichkeiten 333
17.3.1	Wenn das HPLC-System zukünftig einfach mehr können muss 333
17.3.2	Individuelle Optimierungen mit einem Assistenten 334
17.4	Die verbauten Materialien im Fokus der Optimierung 338
17.4.1	Benetzte vs. trockene Bauteile 338
17.5	Softwareoptimierung erfordert Offenheit 341
17.6	Ausblick 342
18	(U)HPLC-Grundlagen und darüber hinaus 345 Gesa Schad, Brigitte Bollig und Kyoko Watanabe
18.1	Typische (U)HPLC-Betriebsparameter und ihre Auswirkung
10.1	auf die chromatographische Leistung 345
18.1.1	Kompressibilität 345
18.1.2	Lösungsmittelzusammensetzung und Injektionsvolumina 348
18.1.3	Diodenarray-Detektor: Spaltbreite 349
18.2	"Analytical Intelligence" – AI, M2M, IoT – wie moderne Technologie die Praxis in der Routine erleichtern kann 352
18.2.1	Automatische Selbstdiagnose und Wiederherstellung erhöhen die Zuverlässigkeit 352
18.2.2	Innovative Datenverarbeitung für bessere Auflösung, was Anwender in der Chromatographie von der Spektroskopie lernen können 352
18.2.3	Wartungsintervalle gezielter planen und Stillstandzeiten vermeiden 356 Literatur 356
19	Herausforderungen in modernen HPLC-Laboratorien 357
	Frank Steiner und Soo Hyun Park
19.1	Vanquish Core, Flex und Horizon – drei Performance-Level für
	spezifische Herausforderungen unserer Zeit 358
19.2	Intelligente und eigenständige HPLC-Geräte 365
19.3	2D-LC zur Analyse komplexer Proben und für weitere
	Automatisierungsmöglichkeiten (siehe auch Kap. 1) 366
19.3.1	Schleifenbasierte Single-Heartcut 2D-LC 368
19.3.2	Schleifenbasierte Multi-Heartcut-2D-LC 369

Inhaltsverzeichnis XVII


- 19.3.3 Trapbasierte Single-Heartcut 2D-LC zur Modulation der Elutionskraft der übertragenen Fraktion 370
- 19.3.4 Trapbasierte Single-Heartcut 2D-LC mit dem Dual Split Sampler 371
- 19.4 Software-assistierte automatisierte Methodenentwicklung 373 Literatur 378
- 20 Systematische Methodenentwicklung mit einem analytischen Qualityby-Design-Ansatz unter Verwendung von Fusions-QbD und UPLC 381 Falk-Thilo Ferse, Detlev Kurth, Tran N. Pham, Fadi L. Alkhateeb und Paul Rainville Literatur 392

Stichwortverzeichnis 393

