Allgemein

Wann ist eine „gute“ Peakform besonders wichtig?

Von 16. März 2023 Januar 29th, 2024 No Comments

Der Fall

Vereinfacht gesagt, ist die Trennleistung – Effizienz, „Performance“, als Bodenzahl wiedergegeben – ein Maß für die Peakform. Eine große Bodenzahl bedeutet scharfe, symmetrische Peaks, eine geringe Bodenzahl dagegen breite, evtl. tailende Peaks. Warum ist die Peakform bei der Trennung großer Moleküle, z. B. Biomoleküle, besonders wichtig oder kritisch?

Die Lösung

Zunächst gilt es drei Punkte festzuhalten:

  • In der Chromatographie ist die Auflösung (Resolution, R), also der Abstand zwischen zwei Peaks an der Basislinie, das wahrscheinlich aussagekräftigste Kriterium für die Güte einer Trennung
  • Die Auflösung ist abhängig von der Kapazität (Stärke der Wechselwirkung, Maß: Retentionsfaktor k), von der Selektivität (unterschiedlich starke Wechselwirkungen zweier Substanzen, Maß: Trennfaktor α) und von der Trennleistung (Peakform, Maß: Bodenzahl, N)
  • Ein wichtiger Trennmechanismus bei Biomolekülen (z. B. Proteine, monoklonale Antikörper) ist die Ausschlusschromatographie, SEC

In der SEC basiert die Trennung auf unterschiedliche Molekülgrößen, eine Wechselwirkung findet definitionsgemäß gar nicht statt (sollte …). Somit entfallen bzgl. Auflösung hier zwei der drei möglichen Optimierungsparameter, nämlich  Kapazität und Selektivität. Das bedeutet: Man kann in der SEC eine genügend gute Trennung nur über eine Verbesserung der Trennleistung, d.h. über die Peakform erzielen. Somit konzentrieren sich die Bemühungen bei der Optimierung einer SEC-Methode erstens auf die Unterbindung von Wechselwirkungen und zweitens auf eine Verbesserung der Peakform. Folglich kommen in der SEC bestimmten Optimierungsparametern eine gewichtigere Rolle als bei anderen Trennmechanismen zu:

  • Möglichst geringes Totvolumen der Apparatur, z. B. Innendurchmesser der Kapillaren < 0,13 mm, totvolumenfreie Verbindungen. Eine optimierte (!) UHPLC-Anlage ist hier von unermesslichem Vorteil – insbesondere bei der Verwendung moderner SEC-Säulen (eher kurz, eher dünn, eher kleine Teilchen), siehe Abbildung 1 und 2
  • Stark verdünnte Probelösungen
  • Möglichst kleine Flussraten
  • Optimale Einstellparameter, z. B. Zeitkonstante < 0,1 s, Spalt 16 nm
  • Lange Säulen, kleine Korngröße, Core Shell-Matrix
  • Physisorption/Adhäsion durch möglichst inerte Oberflächen verhindern, z. B Peak-lined Säulen, metallfreie Materialien im Fluidpfad, Vials mit inertisierter Oberfläche
  • Hohe Konzentration an Natriumperchlorat/Kaliumchlorid im Eluenten

Je ein Beispiel von Waters und Agilent sollen den Einfluss des Totvolumens auf die Auflösung in Fällen, wie den hier besprochenen, demonstrieren:

In Abbildung 1 führt der Wechsel einer 0,17 mm-Kapillare zu einer 0,07 mm-Kapillare dazu, dass ein Aufsetzerpeak immerhin sichtbar wird. Selbstverständlich sollte in diesem Zusammenhang an die erhöhte Gefahr von Niederschlag in sehr dünnen Kapillaren hingewiesen werden.

In Abbildung 2 wird die Verbesserung der Auflösung einer SEC-Methode aufgrund des kleinen Dispersionsvolumens in einer UPLC-Anlage (18 µl) dargestellt. Bemerkung: Für andere Trenntechniken wäre das Dispersionsvolumen (im Alltag kann man ruhig von „Totvolumen“ sprechen) von 30 µl der HPLC-Anlage vollkommen ausreichend.