Schlagwort

Präzision Archive - Dr. Stavros Kromidas

Die kleine Frage zur Validierung …

Von Allgemein, Einstellparameter, Monatstipp, Nachweisgrenze

„Wir haben bei der Bestimmung vom LOQ starke Schwankungen. Auch an unterschiedlichen Geräten und mit neuen Säulen. Woran kann das liegen? Als LOQ-Kriterium haben wir wie üblich ein S/N-Verhältnis von 10:1.“

Antwort:
Die Erfahrung zeigt, dass hier mit recht großen Integrationsfehlern zu rechnen ist.
Wir konnten zeigen (s. Infos am Ende des Beitrages), dass kaum eine kommerzielle Software in der Lage ist, bei automatischer Integration und einem S/N-Verhältnis von 10:1 so zu integrieren, dass der Fehler – bei optimalen (!) Bedingungen (BL-Trennung, kaum Drift usw.) – nicht mindestens 5-10 % beträgt. Siehe dazu weiter unten die Werte in der Tabelle für den ersten, kleinen Peak (oben): In den grau schraffierten Feldern befinden sich Werte mit einer Abweichung von mehr als 1 % vom richtigen Wert, bedingt durch eine fehlerhafte Integration.

 

Einige Kommentare und Erläuterungen zu den Werten der Tabelle:

  • Die verwendeten Einstellparameter („Settings“) wie Dwell-Time, Time Constant, Sample Rate usw. können – vor allem bei kleinen Peaks – die Integration beeinflussen. So ist beispielsweise die Abweichung vom richtigen Wert beim ersten Peak bei einem Threshold-Wert von 50 12,50 %, bei einem Threshold-Wert von 100 17,78 % (EZChrom)
  • Bei einigen Software-Programmen können unterschiedliche Integrationsalgorithmen angewandt werden. Die erhaltenen Ergebnisse können dabei recht stark abweichen, siehe z. B. die Werte der zwei Spalten bei Empower und Chromeleon (Waters, Dionex/Thermo). Das betrifft nicht nur absolute Abweichungen, es können sich sogar sowohl Unter- als auch Überbefunde ergeben
  • Erst ab einem S/N-Verhältnis von ca. 50:1 ist bei allen kommerziellen CDS (Chromatography-Data-Systems) der Integrationsfehler merklich kleiner 1 %

Fazit bzgl. Richtigkeit – wenn das Ziel zuverlässige Ergebnisse lautet:
– Bei symmetrischen, BL-getrennten Peaks liegt der Fehler durch die Integration erst
ab einem S/N-Verhältnis von ca. 50:1 gesichert unter 1 %
– Bei tailenden, Nicht-BL-getrennten Peaks – evtl. noch auf einer driftenden Basislinie –
ist ein S/N-Verhältnis von ca. 100:1 empfehlenswert.

Auch die Reproduzierbarkeit der Integration bei mehrfacher Injektion (Präzision) lässt bei einem S/N-Verhältnis von 10:1 oft zu wünschen übrig.

Empfehlung bzgl. Reproduzierbarkeit von Ergebnissen am LOQ:
Injizieren Sie sechs Mal eine reale Probe und ermitteln bei einem S/N-Verhältnis von 10:1 den Variationskoeffizienten (VK, RSD, Relative Standard Deviation). Frage: Genügt der resultierende VK bei diesen chromatographischen Bedingungen an dieser Apparatur und bei diesen Settings Ihren Anforderungen? Wenn nicht, wäre das S/N-Verhältnis so lange zu erhöhen, bis dies der Fall ist. Diese Konzentration kann dann als gesichert reproduzierbares LOQ (Limit Of Quantification, Bestimmungsgrenze) angesehen werden, die Vergleichbarkeit der Ergebnisse wäre somit gegeben: Ihre Software kann bei dieser Konzentration reproduzierbar integrieren. Ein möglicher systematischer Fehler („Unrichtigkeit“ der Peakfläche und somit des Gehaltes) bleibt natürlich unerkannt, siehe dazu weiter oben „Richtigkeit“.
Merke:
Das in einigen regulierten Bereichen (FDA, ICH etc.) etablierte S/N-Verhältnis von 10:1 als Kriterium für LOQ basiert auf Richtlinien, es sind keine unverrückbare/gesetzliche Vorgaben: Es handelt sich ja um „Guidelines“ und nicht um „Regulation“/“Legal Requirements“. Es zeigt sich, dass mit Begründung ein größeres S/N-Verhältnis als Kriterium für LOQ von Auditoren/Inspektoren durchaus akzeptiert wird.

Weiterführende Infos und Angebote zum Thema „Validierung“: Artikel, Dokumente, Definitionen, Beratung, Bücher, Kurse

Die kleine Frage zur Validierung …

Von Allgemein, Jahrestipps, Nachweisgrenze

„Validierung ist aufwendig und teuer; was ist das Minimum an Validierung, was wir machen müssen?“ Zwei Vorbemerkungen Vor einer Antwort halten wir wie folgt fest: 1. Es gibt viele Definitionen zur Validierung, eine davon lautet: „Das Ziel bei der Validierung einer analytischen Methode ist zu zeigen, dass sie für den beabsichtigten Zweck geeignet ist.“ 2. Validierung ist – anders als z. B. GLP – kein Gesetz. Es gibt demnach de jure keine offizielle Stelle, die bzgl. Umfangs, Validierungstiefe, Durchführung, Revalidierungbedarfs etc. gesetzlich bindende Vorgaben macht. Somit jetzt schon einige Schlussfolgerungen: Validierung ist demnach etwas recht Individuelles: Um was geht es in einem aktuellen Fall eigentlich? Muss ich eher formale Sachen beachten, muss also eine wichtige Person/Organisation lediglich „nicken“? Oder stehen analytische Gesichtspunkte im Vordergrund, die notwendiger-/sinnvollerweise zu beachten sind? Sehr wohl ergibt sich häufig de facto aus bestimmten Zwängen/Gegebenheiten genau „was“, „wie“, und „wieviel“ an Validierung zu tun ist. Wenn ich diese Vorgaben missachte, bekomme ich beispielsweise keine Zulassung für mein Produkt bzw. kann ich besagte Methode gar nicht anwenden. Wenn ich solchen Zwängen nicht unterliege, kann ich selbst denken und dem „beabsichtigten Zweck“ gemäß handeln. Das heißt, ich suche aus der „Validierungsklaviatur“ (Richtigkeit, Präzision, Linearität, Robustheit etc.) diejenigen Validierungsparameter…

Weiterlesen

Sprechen wir alle die gleiche „Sprache“? (II)

Von C - Einführungen, Überblicke, Routine-Tipps, Wartung, allgemeine Hinweise, HPLC-Tipps Demo

Sprechen wir alle die gleiche „Sprache“? (II)

Im diesem Tipp haben wir uns mit verwirrenden Abkürzungen und nicht ganz glücklichen Synonymisierungen beschäftigt. Im hiesigen Tipp möchte ich auf vermeintlich eindeutige Begriffe und Angaben eingehen unter denen evtl. doch Unterschiedliches verstanden wird. Ich habe zwei Begriffe aus der HPLC und drei aus dem Bereich der Validierung ausgesucht.

Beispiele

Luftofen

Zwei Labore möchten Ergebnisse vergleichen, die Hardware ist identisch, beide verwenden einen qualifizierten „Luftofen“. Sollte allerdings der eine ein Ruhluftofen und der andere ein Umluftofen (bzw. das gleiche Gerät aber im unterschiedlichen Modus betrieben) sein, könnten die Ergebnisse evtl. divergieren. Siehe dazu ein Beispiel in Abbildung 1: Bei gleicher Temperaturanzeige am Display kann an unterschiedlichen Luftöfen die Auflösung besser oder schlechter sein, auch Elutionsumkehr ist denkbar, weil ganz einfach die tatsächlich herrschende Temperatur in der Säule eine andere ist.

Abbildung 1. Unterschiedliche Ergebnisse mit unterschiedlichen Luftöfen, Details, siehe Text

Oberfläche des Materials in m2/g

In der Literatur und auch In Broschüren von Herstellern werden häufig die physikalisch-chemischen Daten der verwendeten bzw. angebotenen Materialien angegeben. Es kann leicht passieren, dass man übersieht, dass einmal die Rede von „effektive Oberfläche“ und einmal von „spezifische Oberfläche“ ist. Die Zahlenwerte sind nicht vergleichbar. So entspricht beispielsweise eine effektive Oberfläche von 200 m2/g einer spezifischen Oberfläche von 102 m2/g.

Signal/Rauschen-Verhältnis

Ein Zitat aus der amerikanischen Pharmakopöe:

“The signal-to-noise ratio (S/N) is a useful system suitability parameter. The S/N is calculated as follows: S/N = 2H/h”.

Als Bestimmungsgrenze wird oft ein Signal/Rauschen-Verhältnis von 10:1 verlangt/erwartet. Da jedoch die „2“ bereits in der Formel enthalten ist, bedeutet „10:1“: 20 mal die Peakhöhe zum Rauschen. In manch´ einem Labor wird allerdings als Bestimmungsgrenze tatsächlich 10 mal die Peakhöhe zum Rauschen genommen. Es liegt auf der Hand, dass Ergebnisse nicht vergleichbar sind, zumal die Integration in diesen Bereichen nicht unproblematisch ist…

Genauigkeit

Genauigkeit ist der Oberbegriff von Richtigkeit und Präzision; wenn ein Ergebnis frei ist von systematischen Fehlern, spricht man von einem richtigen Ergebnis. Wenn ein Ergebnis frei ist von zufälligen Fehlern, spricht man von einem präzisen Ergebnis. Wenn nun ein Ergebnis frei ist von systematischen und zufälligen Fehlern, also wenn jenes richtig und präzise ist, spricht man von einem genauen Ergebnis. Es ist allerdings so, dass oft „Genauigkeit“ gleich „Richtigkeit“ gesetzt wird. Die Konfusion wird nicht gerade geringer, als im Englischen für „Richtigkeit“ folgende drei Begriffe benutzt werden: „Accuracy“, „Accuracy of The Mean“, „Trueness“. Hier muss man mit den Gesprächspartnern früh genug für Klarheit der Begrifflichkeiten sorgen.

Linearität

Zwei Pharma-Labore möchten die Daten für die Linearität vergleichen. Die Geräte sind gleich, es werden Standards mit Placebo versetzt verwendet, man einigt sich auf neun unabhängige Werte. Nur: Das eine Labor wendet eine immer wieder anzutreffende Praxis im Pharma-Umfeld „3,3,3“, also drei Konzentrationen, a drei Bestimmungen. Das andere Labor verwendet tastsächlich neun unterschiedliche Konzentrationen und je eine Bestimmung. Auch hier sind die Ergebnisse nicht vergleichbar, auch dann wenn in beiden Fällen sich ein Korrelationskoeffizient mit drei Neuner nach dem Komma ergibt.

Der Ausweg heißt Kommunikation

Es ist sicherlich nicht einfach, derartige Missverständnisse gänzlich zu vermeiden. Man kann nur stets versuchen, eine enge und offene Kommunikation mit den Gesprächspartnern zu pflegen.

Warum kann manchmal eine „zu gute“ Präzision beim Methodentransfer hinderlich sein?

Von A Fehlersuche, HPLC-Tipps, Methodenentwicklung, -Transfer und -Optimierung, Methodentransfer, Variationskoeffizient (Vk)

Von Mike Hillebrand, Aventis Der Fall Ein Baustein des Methodentransfers ist die „Intermediate Precision“ (Laborpräzision). Dabei werden in beiden Laboratorien, dem aufnehmenden und dem abgebenden, Vergleichsanalysen mit der validierten, zu transferierenden Methode durchgeführt. Diese sollen sicherstellen, dass das empfangende Laboratorium in der Lage ist, die neue implementierte Methode anzuwenden. Dadurch ist eine vollständige Validierung der Methode im empfangenden Laboratorium nicht nötig. Das Design der „Intermediate Precision“ richtet sich nach dem Analyseverfahren, welches es zu transferieren gilt. Beispielsweise wird für eine Gehaltsbestimmung häufig ein Design verwendet, bei dem zwei Mitarbeiter pro Labor zum Einsatz kommen. Ziel ist das Prüfen einer Charge….

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Einstellparameter und Variationskoeffizient

Von A Fehlersuche, Einstellparameter, HPLC-Tipps, Integration, Variationskoeffizient (Vk)

Der Fall Einstellparameter wie Zeitkonstante („time constant“), Peakwidth, Datenrateaufnahme („sample rate“), Bandwidth etc. können die Integration und somit Peakfläche und Befund stark beeinflussen. Wir haben uns bereits darüber unterhalten, Details finden sich in (1), (2) und (3). In wie weit beeinflussen nun diese Parameter auch die Streuung der Werte im Falle von Wiederholmessungen? Die Lösung Nachdem ich in der Literatur diesbezüglich nicht fündig geworden bin, wurde in einer kleinen Studie an einer UPLC-Anlage der Einfluss diverser Einstellparameter auf den Vk systematisch untersucht. Dazu wurde zunächst mithilfe von Systemeignungstests die Zuverlässigkeit der Anlage überprüft. Anschließend wurden aus einem vial je 10…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen