All Posts By

sk

Sprechen wir alle die gleiche „Sprache“? (I)

Von C - Einführungen, Überblicke, Routine-Tipps, Wartung, allgemeine Hinweise, HPLC-Tipps Demo

Der Fall

Die unterschiedliche Bedeutung von Hersteller-Abkürzungen sowie die Synonymisierung von an für sich unterschiedlichen Begriffen führen immer wieder zur Konfusion. Nachfolgend möchte ich dazu einige typische Beispiele anführen. Ferner: Unterschiedliche Interpretation von chromatographischen Begriffen und Formulierungen wie auch das Gleichsetzen ähnlich klingender Begriffe kann zu unterschiedlichen Schlussfolgerungen führen. Auch ein Datenvergleich kann sich dadurch als problematisch erweisen. Mit dieser verwandten Problematik werden wir uns im diesem Tipp beschäftigen. Hier finden Sie einige Synonyme in der HPLC.

Die Lösung

Gleiche Abkürzungen

Fangen wir mit dem Einfacheren an: Gehen Sie bitte nicht davon aus, dass gleiche Abkürzungen stets das Gleiche bedeuten. Dazu einige Beispiele:

„HD“ bei Agilent: High Definition
„HD“ bei Macherey Nagel: High Density (stationäre Phase mit ca. 20% Kohlenstoff)
„SB“ bei Waters: Strong Bond
„SB“ bei Agilent: Stable Bond (sterischer Schutz, im Sauren stabil)
„HT“ bei Agilent und Thermo beispielsweise wird für „High Throughput“ verwendet, während bei Waters, Tosoh Bioscience und anderen „HT“ für „High Temperature“ steht.
Auch Zahlen können beim Namen einer Säule etwas Unterschiedliches bedeuten, hier einige Beispiele: Die „2“ ist oft der Hinweis auf ein endcappedes Material (z. B. Inertsil 2, LUNA 2). Bei „HT2“ jedoch (Tosoh Bioscience) ist die „2“ der Hinweis, dass jenes GPC-Material bis 220 °C stabil ist, während die üblichen Hochtemperatur-GPC-Materialien („HT“) nur bis 140°C-150°C stabil sind. Die „3“ bei Inertsil ODS 3 wird als Hinweis verwendet, dass es sich dabei um ein weiteres Produkt der Inertsil-Familie handelt, das Material soll eindeutig von Inertsil ODS 2 abgrenzbar sein, welches recht andere Eigenschaften aufweist. Eine „3“ allerdings nach einem „T“ (z. B. Atlantis T3, Waters) bedeutet, dass der Ligand bei diesem Material über eine trivalente Bindung mit der Oberfläche des Kieselgels verbunden ist (T: Erster Buchstabe aus dem Griechischen „tria“ = drei).
„RP“ bedeutet bekannterweise „Reversed Phase“. „RP“ allerdings direkt nach „C18“, also in etwa „Materialname C18 RP“, ist oft der Hinweis, dass sich auf der Oberfläche dieser C18-Phase zusätzliche polare Gruppierungen befinden, dass also jene stationäre Phase einen (zusätzlichen) polaren Charakter aufweist.

Es gibt erfreulicherweise auch einfache Fälle: Die Bedeutung einer Abkürzung ergibt sich zwangsläufig aus dem Zusammenhang: „ECD“ in der GC bedeutet Electron Capture Detector, in der HPLC, Electrochemical Detector.

Unglückliche Synonymisierungen

  • Aus einem Buch „…Totvolumen, auch Verweilvolumen genannt…“ Diese Gleichsetzung ist problematisch, denn: Totvolumen (Dead Volume, Dispersionsvolumen) ist das Volumen der Apparatur vom Probengeber bis einschließlich Detektor ohne Säule. Ändert sich jenes, ändert sich die Peakform vor allem bei früh eluierenden Peaks, die Retentionszeit ändert sich dabei nur gering. Das Verweilvolumen (Verzögerungsvolumen, Dwell- oder Delay Volume) bei Gradientenanlagen ist das Volumen vom Mischventil bis zum Säulenkopf. Ändert sich jenes, kann eine Vielzahl von Effekten auftreten: Keine Änderung, Änderung der Retentionszeit, der Peakform, der Auflösung, mitunter immer wieder auch der Elutionsreihenfolge.
  • Ebenfalls aus einem Text: „…Selektivität oder Spezifität …“. Diese Gleichsetzung ist nicht richtig: Selektivität ist die Fähigkeit einer Methode alle denkbaren Komponenten ohne gegenseitige Störung zu trennen. Spezifität ist die Fähigkeit einer Methode, eine Substanz oder eine Substanzklasse ohne Störung durch andere Komponenten zu trennen. Leider ist in den 1990er Jahren den Verfassern der Richtlinien der ICH (International Conference of Harmonisation) ein semantischer Fehler unterlaufen, sie verwendeten nämlich den Begriff „Specifity“. Da in diesem Papier (stillschweigend) chromatographische Methoden gemeint sind, sollte richtigerweise von „Selectivity“ die Rede sein, denn: Man schätzt sich in der HPLC-Welt glücklich, eine selektive chromatographische Methode entwickelt zu haben. Spezifität in der Chromatographie ist allenfalls nur theoretisch denkbar. Dieses sprachliche Missgeschick hat im Pharma-Umfeld manche Verwirrung gestiftet.

Das Fazit

Bei einer falsch verwendeten Synonymiesierung ist es zugegebenerweise schwierig dahinter zu kommen. Bei nicht 100%ig geläufigen Abkürzungen lohnt es sich bei Bedarf folgendes zu tun: Geschwind bei der Homepage des Herstellers nachschauen, was wohl damit gemeint ist. Es sei denn, allen Beteiligten ist klar, was mit der Abkürzung gemeint ist, z. B. bei HPLC doch eindeutig: High Pleasure Liquid Chromatography…

Die Kleinen im Sommer: Säurezusatz im Eluenten, Gefahr für Niederschläge, Vorsäule ja, aber was für eine?

Von B Optimierung, C - Einführungen, Überblicke, Routine-Tipps, Wartung, allgemeine Hinweise, Chromatogramm, Eluent, HPLC-Tipps Demo, Uncategorized, Vorsäule

 

  • Säurezusatz im Eluenten
  • Gefahr für Niederschläge
  • Vorsäule ja, aber was für eine?

Alternativen zu TFA

Trifluoressigsäure (TFA) wird gerne zum Ansäuern in der RP-HPLC verwendet, häufig bei – eventuell erst in der Zukunft geplanten –  LC-MS-Kopplungen. TFA bereitet jedoch bekanntlich einige Probleme, so in etwa Basisliniendrift, immer wieder Empfindlichkeitsverlust, TFA kann lange auf der Säule bleiben usw. Welche Alternativen hätten wir? Wenn Ameisensäure für bestimmte Trennungen nicht sauer genug ist, könnte man an Pikrin- oder an Sulfamin- oder an Difluoressigsäure (DFA) denken. Ferner – sollte ein Ionenpaarreagenz benötigt werden – an Methansulfonsäure. Noch ein Wort zu Phosphatpuffer: Phosphorsäure bzw. ein Phosphatpuffer bewährt sich seit langem in der RP-HPLC mit UV-Detektion. Sollten Sie mit der Trennung bzgl. Selektivität/Peakform bei Anwendung von Phosphorsäure oder Phosphatpuffer zufrieden sein, könnte man getrost eine LC-MS-Trennung wagen: Bei einer Verwendung von ca. 10 mM Phosphatpuffer müsste man erst nach 4-5 Stunden das Interface reinigen. Merke in diesem Zusammenhang folgende generelle Regel: Je ähnlicher der pH-Wert des Eluenten zum pKS-Wert des verwendeten Puffers ist, desto niedriger kann die notwendige Pufferkonzentration sein. Dennoch gilt: Das Dilemma gutes chromatographisches Ergebnis vs. Reinigungs-Aufwand kann nur individuell gelöst werden.

Niederschlag

Eine Verstopfung im Gerät durch einen Niederschlag ist immer ärgerlich. Es liegt auf der Hand, dass diese Gefahr mit steigender Puffer- und Acetonitril-Konzentration sowie bei niedrigen Temperaturen zunimmt. Nachfolgend einige Hinweise:

  • Ab ca. 85% Acetonitril in der mobilen Phase und ≥ ca. 20 mM Puffer nimmt das Risiko von Niederschlag im Falle von dünnen, ≤ ca. 0,13 mm Kapillaren stark zu
  • „Phosphatpuffer“ – nur welcher? K2HPO4 (Pufferbereich: pH-Wert = 6,5-7,5) macht kaum Probleme, die Löslichkeit ist sehr gut. Na2HPO4 dagegen, insbesondere bei hohem ACN-Anteil und ≤ ca. 25 °C, kann definitiv Probleme bereiten, denn: Die Differenz der Löslichkeit der zwei Salze beträgt mehr als Faktor 20! Im sauren gibt es generell kaum Schwierigkeiten
  • Ammoniumacetat bei ≥ ca. 60% ACN: Farblose Kristalle, die beispielsweise in der Mischkammer ausfallen

Die „geeignete“ Vorsäule

Oft wird eine Vorsäule zum Schutz der Hauptsäule eingesetzt. Das Material der Vorsäule muss nicht unbedingt identisch mit dem der Trennsäule sein, es ist Regel-konform, wenn es z. B. auch „C18“ ist. Warum nicht identisch? Die Vorsäule hat in der Regel die Aufgabe, ziemlich „viel“ von der störenden Matrix zu adsorbieren, dabei soll sie nach Möglichkeit wenig Druck aufbauen. Diese Anforderungen führen zu folgenden sinnvollen Charakteristika für eine Vorsäule:

  • Gute Beladbarkeit: Dazu soll das Material der Vorsäule eine möglichst große spezifische Oberfläche aufweisen, z. B ≥ 250 m2/g
  • Große Bindungskapazität: Die Beladungsdichte des Materials sollte über 3 mMol/m2 der Kohlenstoffgehalt über ca. 18-20% C betragen
  • Im Falle von Gradiententrennungen spielt die Teilchengröße eine untergeordnete Rolle. Somit kann die Teilchengröße in der Vorsäule ruhig 5 µm betragen, auch dann, wenn die analytische Säule 3 µm-Teilchen oder kleiner enthält. 5 µm- Teilchen sind haltbarer als 3 µm und bauen einen geringeren Druck auf.

Wird eine Vorsäule nicht zum Schutz der Hauptsäule, sondern zu einer Verbesserung der Trennung von sehr polaren Komponenten – also Elution solcher um oder kurz nach der Totzeit – eingesetzt, sollte das Material natürlich polarer als jenes der Hauptsäule sein. Im Falle einer C18-Hauptsäule kämen somit folgende Phasen für die Vorsäule in Frage:
CN, Phenyl-Hexyl, PFP, Hypercarb, Kieselgel oder Mixed-Mode.

Die Kleinen im Sommer: Permanent auftretender Geisterpeak, Faustregeln zu Log P und Log D, Abnahme der Auflösung – eine mögliche Ursache

Von A Fehlersuche, Auflösung, HPLC-Tipps, Spülen, Reinigen & Equilibrieren, Systemeignungstest (SST), Uncategorized

  Permanent auftretender Geisterpeak Faustregeln zu Log P und Log D Abnahme der Auflösung – eine mögliche Ursache Seit kurzem erscheint ein Geisterpeak bzw. stets ein Blindwert im Blank… Seit einiger Zeit taugt bei einer Methode – oder bei mehreren – die noch vor kurzem keine Probleme machte(n), ein Geisterpeak auf. Oder aber, Sie haben in Ihrem Blank auf einmal stets einen Blindwert. Und dieses Problem haben Sie unabhängig von der Anlage, dem/der Anwender(in) und sogar der Methode. D.h. das übliche Fehler-Ausschluss-Programm haben Sie gründlich aber leider erfolglos absolviert. Versuchen Sie in einem solchen Fall im Team sich zu erinnern,…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Die Kleinen im Sommer – Autosampler-vials

Von Auto-Sampler, C - Einführungen, Überblicke, Routine-Tipps, Wartung, allgemeine Hinweise, HPLC-Tipps Demo, Probengeber, Uncategorized, Veränderung der Peakfläche

 

In diesem HPLC-Tipp geht es um diverse Probleme, die mit den Autosampler-Vials zu tun haben.

Vials, immer wieder vials…

  • Beim Schütteln eines vials (bei mir leider immer wieder eine spontane Bewegung…) kann sich auf der Unterseite des vial-caps ein Substanzfilm bilden – die Reproduzierbarkeit der Injektion lässt zu wünschen übrig. Beim Vortexieren bzw. automatischen Schütteln ist diese Gefahr eher selten gegeben, die Präzision bei Wiederholinjektionen ist in der Regel besser
  • Der Greifarm des Autosamplers hat evtl. ein vial verloren; wenn man Pech hat, versteckt sich jenes unter dem Karussell. Dadurch ist das Karussell nun etwas schief, die vials dort liegen ein wenig niedriger/höher, Ergebnis: Geänderte Peakflächen. Der Grund: Die Nadel stößt evtl. an den Wänden vom vial an oder sie kommt auf dem Boden auf. Oder aber im Falle von inhomogenen Probelösungen ergibt sich eine unterschiedliche Probekonzentration oder sogar ein Konzentrationsgradient . Und je nachdem, aus welcher Höhe die Nadel Probelösung ansaugt, ergeben sich Schwankungen der Peakfläche oder ein Trend dergleichen. Die Höhe eines vials kann sich auch dann verändern, wenn sich unter dem vial Schmutz, Dichtungsabrieb, Salzkriställchen usw. eingefunden haben
  • Hellrote vs. dunkelrote vs. Silikon vs. vorgeschlitzte vs. „Sandwitch-Septen“; Unterschiede bezüglich Abriebs bzw. Verdampfens von Probelösungsmittel bzw. Neigung zu Memoryeffekt
  • Vial richtig dicht vs. einfach „klack“ und somit eher locker aufgesetzt: Im ersten Fall ist die erste Injektion evtl. fehlerbehaftet (durch den Unterdruck beim erstmaligen Stechen der Nadel drückt sich etwas von der Probelösung in die Nadel hoch) im zweiten Fall sind alle Injektionen OK – auch die erste
  • Vial, beispielsweise Nr. 18, geht immer wieder kaputt; das ist zwar ein seltener Fall, dennoch möchte ich ihn erwähnen: Durch einen Fabrikationsfehler kann beim 6-Port-Ventil passieren, dass die zwei Scheiben nicht 100% übereinander liegen. Bei wiederholten Problemen mit Injektionen nur aus einem bestimmten vial am besten zeitnah den Hersteller wegen eines Austausches kontaktieren
  • Probleme beim Methodentransfer

Beim Methodentransfer tauchen oft deswegen Probleme auf, weil nicht alle Informationen ausgetauscht bzw. Begriffe unterschiedlich verstanden werden. Nachfolgend drei Beispiele betreffend die vials:

  • „Wir arbeiten bei diesen geringen Volumina mit Aufsätzen, die sollt ihr auch verwenden“. „OK“. Nur: In einem Labor werden die beweglichen (und billigen) Aufsätze verwendet, im anderen die festen Aufsätze. Es ergeben sich womöglich unterschiedliche Peakflächen, weil im ersten Fall die Nadel links oder rechts die Vial-Wand berühren kann…
  • „Wirkstoff X bleibt gerne hängen, ihr sollt vials mit inerter Oberfläche verwenden.“ „OK“. Nur: Versteht jede(r) unter „inert“ das Gleiche?
  • Es werden statt Glas, PP-vials verwendet; die einen haben die normalen Eppi´s die anderen die low-bind Eppi´s …
  • Die vials werden mit HCL behandelt; die Silanolgruppen auf der Glasoberfläche liegen undissoziiert vor, basische Wirkstoffe werden zwar nicht adsorbiert, Wasserstoffbrückenbindungen wären jedoch möglich
  • Es werden silanisierte vials verwendet; analog einer endcappeden C18-Phase werden nicht nur keine basische sondern überhaupt keine polare Komponenten adsorbiert
  • Es werden silikonisierte vials verwendet; durch die Silikon-Schutzschicht wird nicht lediglich Adsorption sondern auch eine Benetzung der Oberfläche verhindert, die Probelösung perlt einfach ab
  • „Wir arbeiten mit vials mit so ´ne Verjüngung, weißt Du? „Ja, wir auch!“ Nur: Erstens, können solche Aufsätze unterschiedliche Länge aufweisen. Und zweitens kann der Durchmesser am Ende der Verjüngung unterschiedlich groß sein. Dadurch kann durch die Oberflächenspannung genau dort ein Luftbläschen entstehen – und dies abhängig vom Probelösungsmittel! Ergebnis: Unterschiedliche Peakflächen

In Abbildung 1 werden Aufsätze der Firma VWR gezeigt, die die hier
erwähnten Unterschiede demonstrieren.

Abbildung 1: Aufsätze für HPLC-vials unterschiedlicher Länge und unterschiedlicher Verjüngung, Details, siehe Text

Regulierter Bereich, feststehende Prüfvorschrift, geforderte Auflösung wird nicht erreicht – was ist möglich?

Von Apparatur, Auflösung, B Optimierung, Bodenzahl, Einstellparameter, HPLC-Tipps, Injektionsvolumen, Optimierung, Probenlösungsmittel, Totvolumen, Veränderung des Chromatogramms

Der Fall Sie arbeiten in einem regulierten Bereich und sind an strenge Prüfvorschriften gebunden. In einer solchen lautet die Forderung: „Auflösung R größer 1,5“, aber gerade diesen Wert erreichen Sie aktuell nicht. Welche regel-konforme Handgriffe kämen in Frage? Die Lösung Was möglich ist, hängt letzten Endes davon ab, wie genau die Angaben in der betreffenden PV sind. Ist in der Tat restlos alles – von der Eluentenzusammensetzung bis zu den Einstellungen („Settings“) – vorgegeben, so können Sie de facto es nur mit einer neuen Säule versuchen. Ist die PV etwas „weicher“, d.h. es sind nur die wichtigsten Parameter wie Säule,…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Nicht-endcappede Phasen – ein Auslaufmodell?

Von Auflösung, B Optimierung, Bodenzahl, HPLC-Tipps Demo, Methodenentwicklung, -Transfer und -Optimierung, Optimierung, polare Komponenten, Säulenauswahl, Stationäre Phase, Veränderung des Chromatogramms

Der Fall

In den letzten Jahren wurde eine Reihe moderner C18- sowie polarer RP-Phasen eingeführt. Da wären beispielhaft zu nennen: Chemisch geschützte („embedded“ phases), hydrophil endcappede sowie Mixed Mode Phasen und was die Matrix betrifft: Hybrid-, Core Shell- oder monolithische Phasen. Diese Materialien weisen vielfach Vorteile auf. Heißt es nun, dass bei der Entwicklung einer neuen Methode der Einsatz einer solchen modernen Phase die richtige Wahl wäre? Sollte man also nicht-endcappede Phasen als eine alte Technologie „ad acta“ legen?

Die Lösung

Nein. Für die Trennung von Substanzen mit ähnlicher Hydrophobie, aber mit Unterschieden in der Anordnung von Substituenten am Molekül oder von Doppelbindungen in einer Seitenkette (α, β-Isomerie, Stellungsisomerie) oder stark polare Komponenten sind Restsilanolgruppen für die Selektivität sehr wichtig. Dies wird an drei Beispielen demonstriert:

Beispiel 1: Trennung von Steroiden

Abb. 1: Trennung von drei Steroiden an zwei endcappeden (oben, Mitte) und an einer nicht endcappeden C18-Phase (unten), Erläuterungen siehe Text.

Das obere und mittlere Chromatogramm zeigen die Injektion von drei Steroiden (α, β-Isomere) an zwei modernen, hydrophoben Phasen. Steroid Nr. 2 und 3 koeluieren. Die Trennung gelingt an Resolve C18, einem älteren, nicht endcappeden Material, siehe unteres Chromatogramm in Abbildung 1.

Beispiel 2: Trennung von starken Basen

Abb. 2: Injektion einer Mischung von drei polaren Komponenten auf eine silanophile (links) und eine hydrophobe, endcappede C18-Phase (rechts), Erläuterungen, siehe Text.

Auf der rechten Seite der Abbildung 2 wird die Injektion von Uracil (inerte Komponente), Pyridin, Benzylamin und Phenol an einer modernen endcappeden C18-Säule gezeigt. Die zwei Basen koeluieren (erster Peak), was vollkommen nachvollziehbar ist: Man kann nicht erwarten, dass eine hydrophobe, gründlich endcappede Phase eine gute polare Selektivität aufweist. Und das kann zu falschen Schlussfolgerungen führen: Eine gute Peaksymmetrie suggeriert im Routinealltag eine gute Selektivität… Das linke Chromatogramm zeigt die Injektion auf eine „alte“, stark silanophile Phase, Hypersil ODS, das Ergebnis lautet: Eine hervorragende Selektivität für die zwei starke Basen bei gleichzeitig sehr langsamen Kinetik (starkes Tailing). Dass weitere polare Phasen wie beispielsweise eine C7-fluorierte Phase eine ebenso gute Selektivität aufweist (siehe mittleres Chromatogramm) versteht sich von selbst.

Beispiel 3: Injektion einer Mischung diverser Komponenten inkl. drei Isomeren (o-, m-, p-Toluidin) 

An mehreren Säulen von Waters erhält man nahezu das gleiche Bild, die Chromatogramme sehen recht ähnlich aus, für die drei Isomere ergeben sich zwei Peaks, siehe Pfeile in Abbildung 3. Erst beim Einsetzen einer nicht-endcappeden Phase (Abbildung 4) sind für die drei Isomere drei Peaks zu sehen. Ferner: Betrachte bei den letzten zwei Peaks die Elutionsumkehr. Auch hier: Eine fluorierte Phase (Abbildung 4, rechts) zeigt eine noch bessere polare Selektivität bei einer noch langsameren Kinetik, siehe dazu das auffallend starke Tailing.

Abb. 3 Trennung von polaren und apolaren Aromaten inkl. Stellungsisomeren, Erläuterung, siehe Text

Abb. 4 Trennung von polaren und apolaren Aromaten inkl. Stellungsisomeren, Erläuterung, siehe Text

Das Fazit

Für eine Vielzahl üblicher Trennprobleme sind moderne, endcappede Materialien zweifelsohne die richtige Wahl. Es gibt jedoch Fälle, in denen gerade Restsilanolgruppen eine Erhöhung der Selektivität bedingen. Das ist generell der Fall, wenn für die Selektivität zusätzliche Ionenaustausch-Wechselwirkungen notwendig sind wie beispielsweise bei Stellungsisomeren, Phospholipiden und starken Säuren/Basen. Eine evtl. suboptimale Peakform muss oft zu Gunsten einer guten polaren Selektivität in Kauf genommen werden. Es gilt folgende vereinfachte Regel: Je ähnlicher die Moleküle sind, umso notwendiger sind zusätzliche polare/ionische Wechselwirkungen für deren Trennung, umso langsamer die Kinetik bei der Desorption solcher Moleküle von der stationären Phase. Zur Auswahl und zum Vergleich von RP-Säulen siehe „Colona Vergleich und Auswahl von HPLC-RP-Säulen“ , ferner auch das Dokument „Einfache Tests zur Charakterisierung von HPLC-RP-Säulen“.

 

Effektives Spülen einer HPLC-RP-Säule – und Verifizierung des Erfolges

Von HPLC-Tipps, HPLC-Tipps Demo, Spülen, Reinigen & Equilibrieren
Der Fall Eine RP-Säule sollte ab und an gespült werden; erfahrene AnwenderInnen wissen wie, z. B: „Übliche“ Spülprozedur, oft vollkommen ausreichend: 70-80% Acetonitril (ACN)- oder Methanol (MeOH)-Wasser-Gemisch Imfalle von polaren Verunreinigungen: 90-95% H2O, Rest: ACN oder MeOH Imfalle von apolaren Verunreinigungen: 80-100% ACN oder MeOH Soweit, so gut – nur: Bei unbekannten Verunreinigungen müsste man – um des Erfolges sich recht sicher zu sein – einmal mit „viel“ Wasser und einmal mit „viel“ ACN spülen, was schon zeitaufwendig ist. Ferner: Bei unbekannten Verunreinigungen und/oder „schwieriger“ Matrix ist man nach etwaiger Spülprozedur doch unsicher, in wieweit sie erfolgreich verlaufen ist. Gibt...
Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Ist es vorteilhaft für mich, diesen Parameter zu erhöhen/erniedrigen?  

Von B Optimierung, Eluent, HPLC-Tipps, Optimierung, pH-Wert des Eluenten, Säule, Veränderung des Chromatogramms

Der Fall In diesem HPLC-Tipp haben wir uns über folgenden Tatbestand unterhalten: Wenn ich in der HPLC einen physikalischen Parameter verändere, ist das Ergebnis selten eindeutig „gut“ oder „schlecht“. Je nach Betrachtungsweise bzw. Anforderungen überwiegen Vor- oder eben Nachteile. Dies gilt analog auch für chemische Parameter. Hier wollen wir stellvertretend sechs solcher betrachten, siehe Tabelle 1. Die Lösung   Was Nachteile Vorteile Erhöhung der Temperatur In der Regel Abnahme der Selektivität und der Lebensdauer der Säule, ferner erhöhte Gefahr für  Zersetzung von thermolabiler Analyten Abnahme der Retentionszeit und des Druckes, Verbesserung der Peakform und dadurch Zunahme der Peakkapazität (Anzahl der…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Ist es vorteilhaft für mich, diesen Parameter zu erhöhen?  

Von A Fehlersuche, B Optimierung, HPLC-Tipps, HPLC-Tipps Demo, Säule, Verweilvolumen
Der Fall Selten sind Eigenschaften eindeutig nur als positiv oder als negativ zu bezeichnen. So hat ein Ferrari zwar Vorteile. Wenn ich allerdings mit diesem Vehikel und mit meinen vier Kindern und mit meiner Schwiegermutter und mit unserem Hund Mitte August nach Griechenland fahren will, wird es gelinde gesagt mindestens „interessant“…Genauso verhält es sich mit Änderungen. Sie bescheren selten nur „gute“ oder nur „schlechte“ Ergebnisse, so auch in der HPLC: Wenn ich einen Parameter verändere, ergeben sich je nach Betrachtungsweise bzw. Anforderungen Vor- oder eben Nachteile. In Tabelle 1 finden Sie sechs physikalische Parameter mit einer differenzierten Betrachtung deren Auswirkungen....
Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Zusätze in der Probelösung  

Von Auflösung, B Optimierung, Eluent, HPLC-Tipps, Optimierung, Peakverbreiterung, pH-Wert des Eluenten, Uncategorized

Der Fall Additiva (Modifier) oder einfache Zusätze wie Salze in der mobilen Phase können die Trennung positiv beeinflussen, ihr Einsatz bewährt sich seit Jahrzehnten. So kann beispielsweise die Peaksymmetrie und dadurch indirekt die Empfindlichkeit durch Verwendung von etwa Di- oder Triethylamin, DEA/TEA, Di-Tri- oder Fluoressigsäure, DFA/TFA/FA, Ionenpaarreagenzien wie Heptan- oder Oktansulfonsäure erhöht werden. Das Problem dabei: Solche Additiva werden teilweise an der Oberfläche der stationären Phase (irreversibel) adsorbiert, was in der Routine vielleicht ein geringe(re)s Problem darstellt. In der Methodenentwicklung jedoch ist dies störend, weil ja nach jedem Experiment die Säule mühsam durch Spülen wieder in den ursprünglichen Zustand gebracht…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen