Kategorie

B Optimierung

Die „Kleinen“ im Sommer …

Von Allgemein, Auflösung, B Optimierung, Bodenzahl, HPLC-Tipps, Probenlösungsmittel

1. „Schwach“ ist oft effektiver – im positiven oder im negativen Sinn 2. Auflösung bei einer RP-Trennung nicht vorhanden – effektive Maßnahmen   „Schwach“ ist oft effektiver – im positiven oder im negativen Sinn An schwachen Ionenaustauscher (WCX) werden sehr ähnliche ionische Komponenten häufig besser getrennt als an starken (SCX) Mit einer schwachen Probelösung(im RP-Modus: Jene einfach mit Wasser verdünnen oder mit Neutralsalz versetzen) erreicht man häufig eine Verbesserung der Peakform und somit der Auflösung, vor allem bei früh eluierenden Peaks Analog die mobile Phase: Ein schwächerer Eluent (im RP-Modus: Wasser-/Pufferreich) führt in der Regel zu einer besseren Trennung Eine schwächere Isopropanol/Wasser-Lösung (z. B….

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Die Kleinen im Sommer: Säurezusatz im Eluenten, Gefahr für Niederschläge, Vorsäule ja, aber was für eine?

Von B Optimierung, C - Einführungen, Überblicke, Routine-Tipps, Wartung, allgemeine Hinweise, Chromatogramm, Eluent, HPLC-Tipps Demo, Uncategorized, Vorsäule

 

  • Säurezusatz im Eluenten
  • Gefahr für Niederschläge
  • Vorsäule ja, aber was für eine?

Alternativen zu TFA

Trifluoressigsäure (TFA) wird gerne zum Ansäuern in der RP-HPLC verwendet, häufig bei – eventuell erst in der Zukunft geplanten –  LC-MS-Kopplungen. TFA bereitet jedoch bekanntlich einige Probleme, so in etwa Basisliniendrift, immer wieder Empfindlichkeitsverlust, TFA kann lange auf der Säule bleiben usw. Welche Alternativen hätten wir? Wenn Ameisensäure für bestimmte Trennungen nicht sauer genug ist, könnte man an Pikrin- oder an Sulfamin- oder an Difluoressigsäure (DFA) denken. Ferner – sollte ein Ionenpaarreagenz benötigt werden – an Methansulfonsäure. Noch ein Wort zu Phosphatpuffer: Phosphorsäure bzw. ein Phosphatpuffer bewährt sich seit langem in der RP-HPLC mit UV-Detektion. Sollten Sie mit der Trennung bzgl. Selektivität/Peakform bei Anwendung von Phosphorsäure oder Phosphatpuffer zufrieden sein, könnte man getrost eine LC-MS-Trennung wagen: Bei einer Verwendung von ca. 10 mM Phosphatpuffer müsste man erst nach 4-5 Stunden das Interface reinigen. Merke in diesem Zusammenhang folgende generelle Regel: Je ähnlicher der pH-Wert des Eluenten zum pKS-Wert des verwendeten Puffers ist, desto niedriger kann die notwendige Pufferkonzentration sein. Dennoch gilt: Das Dilemma gutes chromatographisches Ergebnis vs. Reinigungs-Aufwand kann nur individuell gelöst werden.

Niederschlag

Eine Verstopfung im Gerät durch einen Niederschlag ist immer ärgerlich. Es liegt auf der Hand, dass diese Gefahr mit steigender Puffer- und Acetonitril-Konzentration sowie bei niedrigen Temperaturen zunimmt. Nachfolgend einige Hinweise:

  • Ab ca. 85% Acetonitril in der mobilen Phase und ≥ ca. 20 mM Puffer nimmt das Risiko von Niederschlag im Falle von dünnen, ≤ ca. 0,13 mm Kapillaren stark zu
  • „Phosphatpuffer“ – nur welcher? K2HPO4 (Pufferbereich: pH-Wert = 6,5-7,5) macht kaum Probleme, die Löslichkeit ist sehr gut. Na2HPO4 dagegen, insbesondere bei hohem ACN-Anteil und ≤ ca. 25 °C, kann definitiv Probleme bereiten, denn: Die Differenz der Löslichkeit der zwei Salze beträgt mehr als Faktor 20! Im sauren gibt es generell kaum Schwierigkeiten
  • Ammoniumacetat bei ≥ ca. 60% ACN: Farblose Kristalle, die beispielsweise in der Mischkammer ausfallen

Die „geeignete“ Vorsäule

Oft wird eine Vorsäule zum Schutz der Hauptsäule eingesetzt. Das Material der Vorsäule muss nicht unbedingt identisch mit dem der Trennsäule sein, es ist Regel-konform, wenn es z. B. auch „C18“ ist. Warum nicht identisch? Die Vorsäule hat in der Regel die Aufgabe, ziemlich „viel“ von der störenden Matrix zu adsorbieren, dabei soll sie nach Möglichkeit wenig Druck aufbauen. Diese Anforderungen führen zu folgenden sinnvollen Charakteristika für eine Vorsäule:

  • Gute Beladbarkeit: Dazu soll das Material der Vorsäule eine möglichst große spezifische Oberfläche aufweisen, z. B ≥ 250 m2/g
  • Große Bindungskapazität: Die Beladungsdichte des Materials sollte über 3 mMol/m2 der Kohlenstoffgehalt über ca. 18-20% C betragen
  • Im Falle von Gradiententrennungen spielt die Teilchengröße eine untergeordnete Rolle. Somit kann die Teilchengröße in der Vorsäule ruhig 5 µm betragen, auch dann, wenn die analytische Säule 3 µm-Teilchen oder kleiner enthält. 5 µm- Teilchen sind haltbarer als 3 µm und bauen einen geringeren Druck auf.

Wird eine Vorsäule nicht zum Schutz der Hauptsäule, sondern zu einer Verbesserung der Trennung von sehr polaren Komponenten – also Elution solcher um oder kurz nach der Totzeit – eingesetzt, sollte das Material natürlich polarer als jenes der Hauptsäule sein. Im Falle einer C18-Hauptsäule kämen somit folgende Phasen für die Vorsäule in Frage:
CN, Phenyl-Hexyl, PFP, Hypercarb, Kieselgel oder Mixed-Mode.

Regulierter Bereich, feststehende Prüfvorschrift, geforderte Auflösung wird nicht erreicht – was ist möglich?

Von Apparatur, Auflösung, B Optimierung, Bodenzahl, Einstellparameter, HPLC-Tipps, Injektionsvolumen, Optimierung, Probenlösungsmittel, Totvolumen, Veränderung des Chromatogramms

Der Fall Sie arbeiten in einem regulierten Bereich und sind an strenge Prüfvorschriften gebunden. In einer solchen lautet die Forderung: „Auflösung R größer 1,5“, aber gerade diesen Wert erreichen Sie aktuell nicht. Welche regel-konforme Handgriffe kämen in Frage? Die Lösung Was möglich ist, hängt letzten Endes davon ab, wie genau die Angaben in der betreffenden PV sind. Ist in der Tat restlos alles – von der Eluentenzusammensetzung bis zu den Einstellungen („Settings“) – vorgegeben, so können Sie de facto es nur mit einer neuen Säule versuchen. Ist die PV etwas „weicher“, d.h. es sind nur die wichtigsten Parameter wie Säule,…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Nicht-endcappede Phasen – ein Auslaufmodell?

Von Auflösung, B Optimierung, Bodenzahl, HPLC-Tipps Demo, Methodenentwicklung, -Transfer und -Optimierung, Optimierung, polare Komponenten, Säulenauswahl, Stationäre Phase, Veränderung des Chromatogramms

Der Fall

In den letzten Jahren wurde eine Reihe moderner C18- sowie polarer RP-Phasen eingeführt. Da wären beispielhaft zu nennen: Chemisch geschützte („embedded“ phases), hydrophil endcappede sowie Mixed Mode Phasen und was die Matrix betrifft: Hybrid-, Core Shell- oder monolithische Phasen. Diese Materialien weisen vielfach Vorteile auf. Heißt es nun, dass bei der Entwicklung einer neuen Methode der Einsatz einer solchen modernen Phase die richtige Wahl wäre? Sollte man also nicht-endcappede Phasen als eine alte Technologie „ad acta“ legen?

Die Lösung

Nein. Für die Trennung von Substanzen mit ähnlicher Hydrophobie, aber mit Unterschieden in der Anordnung von Substituenten am Molekül oder von Doppelbindungen in einer Seitenkette (α, β-Isomerie, Stellungsisomerie) oder stark polare Komponenten sind Restsilanolgruppen für die Selektivität sehr wichtig. Dies wird an drei Beispielen demonstriert:

Beispiel 1: Trennung von Steroiden

Abb. 1: Trennung von drei Steroiden an zwei endcappeden (oben, Mitte) und an einer nicht endcappeden C18-Phase (unten), Erläuterungen siehe Text.

Das obere und mittlere Chromatogramm zeigen die Injektion von drei Steroiden (α, β-Isomere) an zwei modernen, hydrophoben Phasen. Steroid Nr. 2 und 3 koeluieren. Die Trennung gelingt an Resolve C18, einem älteren, nicht endcappeden Material, siehe unteres Chromatogramm in Abbildung 1.

Beispiel 2: Trennung von starken Basen

Abb. 2: Injektion einer Mischung von drei polaren Komponenten auf eine silanophile (links) und eine hydrophobe, endcappede C18-Phase (rechts), Erläuterungen, siehe Text.

Auf der rechten Seite der Abbildung 2 wird die Injektion von Uracil (inerte Komponente), Pyridin, Benzylamin und Phenol an einer modernen endcappeden C18-Säule gezeigt. Die zwei Basen koeluieren (erster Peak), was vollkommen nachvollziehbar ist: Man kann nicht erwarten, dass eine hydrophobe, gründlich endcappede Phase eine gute polare Selektivität aufweist. Und das kann zu falschen Schlussfolgerungen führen: Eine gute Peaksymmetrie suggeriert im Routinealltag eine gute Selektivität… Das linke Chromatogramm zeigt die Injektion auf eine „alte“, stark silanophile Phase, Hypersil ODS, das Ergebnis lautet: Eine hervorragende Selektivität für die zwei starke Basen bei gleichzeitig sehr langsamen Kinetik (starkes Tailing). Dass weitere polare Phasen wie beispielsweise eine C7-fluorierte Phase eine ebenso gute Selektivität aufweist (siehe mittleres Chromatogramm) versteht sich von selbst.

Beispiel 3: Injektion einer Mischung diverser Komponenten inkl. drei Isomeren (o-, m-, p-Toluidin) 

An mehreren Säulen von Waters erhält man nahezu das gleiche Bild, die Chromatogramme sehen recht ähnlich aus, für die drei Isomere ergeben sich zwei Peaks, siehe Pfeile in Abbildung 3. Erst beim Einsetzen einer nicht-endcappeden Phase (Abbildung 4) sind für die drei Isomere drei Peaks zu sehen. Ferner: Betrachte bei den letzten zwei Peaks die Elutionsumkehr. Auch hier: Eine fluorierte Phase (Abbildung 4, rechts) zeigt eine noch bessere polare Selektivität bei einer noch langsameren Kinetik, siehe dazu das auffallend starke Tailing.

Abb. 3 Trennung von polaren und apolaren Aromaten inkl. Stellungsisomeren, Erläuterung, siehe Text

Abb. 4 Trennung von polaren und apolaren Aromaten inkl. Stellungsisomeren, Erläuterung, siehe Text

Das Fazit

Für eine Vielzahl üblicher Trennprobleme sind moderne, endcappede Materialien zweifelsohne die richtige Wahl. Es gibt jedoch Fälle, in denen gerade Restsilanolgruppen eine Erhöhung der Selektivität bedingen. Das ist generell der Fall, wenn für die Selektivität zusätzliche Ionenaustausch-Wechselwirkungen notwendig sind wie beispielsweise bei Stellungsisomeren, Phospholipiden und starken Säuren/Basen. Eine evtl. suboptimale Peakform muss oft zu Gunsten einer guten polaren Selektivität in Kauf genommen werden. Es gilt folgende vereinfachte Regel: Je ähnlicher die Moleküle sind, umso notwendiger sind zusätzliche polare/ionische Wechselwirkungen für deren Trennung, umso langsamer die Kinetik bei der Desorption solcher Moleküle von der stationären Phase. Zur Auswahl und zum Vergleich von RP-Säulen siehe „Colona Vergleich und Auswahl von HPLC-RP-Säulen“ , ferner auch das Dokument „Einfache Tests zur Charakterisierung von HPLC-RP-Säulen“.

 

Ist es vorteilhaft für mich, diesen Parameter zu erhöhen/erniedrigen?  

Von B Optimierung, Eluent, HPLC-Tipps, Optimierung, pH-Wert des Eluenten, Säule, Veränderung des Chromatogramms

Der Fall In diesem HPLC-Tipp haben wir uns über folgenden Tatbestand unterhalten: Wenn ich in der HPLC einen physikalischen Parameter verändere, ist das Ergebnis selten eindeutig „gut“ oder „schlecht“. Je nach Betrachtungsweise bzw. Anforderungen überwiegen Vor- oder eben Nachteile. Dies gilt analog auch für chemische Parameter. Hier wollen wir stellvertretend sechs solcher betrachten, siehe Tabelle 1. Die Lösung   Was Nachteile Vorteile Erhöhung der Temperatur In der Regel Abnahme der Selektivität und der Lebensdauer der Säule, ferner erhöhte Gefahr für  Zersetzung von thermolabiler Analyten Abnahme der Retentionszeit und des Druckes, Verbesserung der Peakform und dadurch Zunahme der Peakkapazität (Anzahl der…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Ist es vorteilhaft für mich, diesen Parameter zu erhöhen?  

Von A Fehlersuche, B Optimierung, HPLC-Tipps, HPLC-Tipps Demo, Säule, Verweilvolumen
Der Fall Selten sind Eigenschaften eindeutig nur als positiv oder als negativ zu bezeichnen. So hat ein Ferrari zwar Vorteile. Wenn ich allerdings mit diesem Vehikel und mit meinen vier Kindern und mit meiner Schwiegermutter und mit unserem Hund Mitte August nach Griechenland fahren will, wird es gelinde gesagt mindestens „interessant“…Genauso verhält es sich mit Änderungen. Sie bescheren selten nur „gute“ oder nur „schlechte“ Ergebnisse, so auch in der HPLC: Wenn ich einen Parameter verändere, ergeben sich je nach Betrachtungsweise bzw. Anforderungen Vor- oder eben Nachteile. In Tabelle 1 finden Sie sechs physikalische Parameter mit einer differenzierten Betrachtung deren Auswirkungen....
Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Zusätze in der Probelösung  

Von Auflösung, B Optimierung, Eluent, HPLC-Tipps, Optimierung, Peakverbreiterung, pH-Wert des Eluenten, Uncategorized

Der Fall Additiva (Modifier) oder einfache Zusätze wie Salze in der mobilen Phase können die Trennung positiv beeinflussen, ihr Einsatz bewährt sich seit Jahrzehnten. So kann beispielsweise die Peaksymmetrie und dadurch indirekt die Empfindlichkeit durch Verwendung von etwa Di- oder Triethylamin, DEA/TEA, Di-Tri- oder Fluoressigsäure, DFA/TFA/FA, Ionenpaarreagenzien wie Heptan- oder Oktansulfonsäure erhöht werden. Das Problem dabei: Solche Additiva werden teilweise an der Oberfläche der stationären Phase (irreversibel) adsorbiert, was in der Routine vielleicht ein geringe(re)s Problem darstellt. In der Methodenentwicklung jedoch ist dies störend, weil ja nach jedem Experiment die Säule mühsam durch Spülen wieder in den ursprünglichen Zustand gebracht…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Der RP-Gradient – eine „andere“ Welt…

Von Apparatur, B Optimierung, Chromatogramm, Gradient, HPLC-Tipps, Methodenentwicklung, -Transfer und -Optimierung, Methodentransfer, Peakverbreiterung, Totvolumen, Veränderung der Retentionszeit, Veränderung des Chromatogramms, Verweilvolumen

Der Fall Chromatographische Gesetzmäßigkeiten gelten grundsätzlich stets, unabhängig davon, ob es sich um HPLC, IC oder GC handelt. Und natürlich auch, ob isokratische oder Gradiententrennungen vorliegen. Jedoch gibt es bei LC-Gradienten einige Charakteristika, die schon etwas „eigen“ sind und sie man sinnvollerweise im Kopf behalten sollte. Dies hilft im Alltag, Ergebnisse richtig zu deuten und Vorhersagen bei Optimierungsläufen ein wenig sicherer zu treffen. Schauen wir uns nun zwei-drei typische an. Die Lösung Vorbemerkung: Die weiter unten aufgeführten Hinweise sind mit Hilfe entsprechender Formeln leicht zu belegen. Wir verzichten allerdings an dieser Stelle auf „Mathematik“ und konzentrieren uns lediglich auf die…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Wie kann ich einen Peak „schöner“ machen?

Von Apparatur, B Optimierung, Bodenzahl, Einstellparameter, Gradient, HPLC-Tipps, Injektionsvolumen, Optimierung, Probenlösungsmittel, Totvolumen

Der Fall Ein oder mehrere Peaks ist/sind klein und breit. Wie kann ich schnell die Peakform verbessern? Das Thema haben wir in ähnlicher Form bereits behandelt. Die Frage wird jedoch von AnwenderInnen recht häufig gestellt, ich kann gerne noch einmal darauf eingehen. Die Lösung Nachfolgende Vorschläge zielen auf typische RP-Systeme: Schnelle Maßnahmen, Zeitbedarf bis ca. 15-20 min Probelösung mit Wasser und/oder mit Kochsalz/Puffer versetzen und – wenn erlaubt – mehr injizieren, ansonsten Injektionsvolumen konstant lassen Säule umdrehen – nicht bei UHPLC-Säulen und auch nicht beim Gradienten: Evtl. vorhandene Hohlräume am Säulenkopf, die eine Verschlechterung der Peakform bedeuten, befinden sich nun…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Sehr kleine Peaks – was kann ich tun?

Von B Optimierung, Einstellparameter, HPLC-Tipps, kleine Peaks

Der Fall Nehmen wir an, Sie müssen Komponenten in einer extrem geringen Konzentration quantifizieren – die Peaks sind einfach sehr klein. Es geht also im vorliegenden Fall vordergründlich nicht um eine gute Auflösung, es geht um eine gute Detektierbarkeit. Leider stehen Ihnen weder ein FLD noch eine LC/MS zur Verfügung, Sie müssen mit einem DAD arbeiten. Nehmen wir ferner an, es handelt sich um eine Gradientenmethode. Welche Möglichkeiten gibt es nun, einigermaßen auswertbare Peaks zu erhalten? Die Lösung Nachfolgend stichwortartig einige Lösungswege: Kleines Säulenvolumen: Möglichst kurze und dünne Säulen, z. B. 30-50 x 2,1 mm Möglichst schwache Probelösung, die Peakform…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen