Kategorie

Veränderung des Chromatogramms

Woher kommt das?

Von A Fehlersuche, Bodenzahl, Detektor, Fluss, Injektionsvolumen, Jahrestipps, Peakverbreiterung, pH-Wert des Eluenten, Pumpe, Veränderung der Retentionszeit, Veränderung des Chromatogramms

Typischen Symptomen können bestimmten Ursachen zugeordnet werden; oder aber die Zahl der infrage kommenden Ursachen kann durch Beurteilung der Symptome („Welche Veränderung kann dieses Symptom bedingen und welche definitiv nicht?“) wenigstens eingegrenzt werden. Nachfolgend werden beispielhaft sieben häufige „Symptome-Ursachen“ in der Routine-HPLC vorgestellt. Bei Bedarf erfolgt auch ein Kommentar. Für die vorgestellten Fälle gelten folgende Annahmen: Keine bewusste Änderung seitens der Anwender:innen, z. B. es wurde keine längere Säule eingebaut Es handelt sich vorwiegend um RP-Trennungen mit einem konzentrationsempfindlichen Detektor wie beispielsweise UVVis, Diodenarray, Fluoreszenz- oder Brechungsindexdetektor Weiter unten sind die häufigsten Ursachen genannt Symbole: ∆: Änderung H: Peakhöhe A: Peakfläche T: Temperatur P: Druck c: Konzentration tR: Retentionszeit t0: Totzeit (Front, Injektionspeak) In der Tabelle weiter unten befindet sich auch die Spalte „Welches Symptom noch?“. Sie ist leer. Liebe Leser:innen, es könnte sein, dass Sie um den Jahreswechsel herum ein wenig Zeit haben … Sollte dies der Fall sein und Sie Lust verspüren, könnten Sie sich überlegen, welches Symptom zum jeweiligen Fall zusätzlich „passt“, also: Welcher Parameter bleibt zusätzlich konstant, welcher ändert sich noch? Im ersten Tipp des Jahres 2023 werden Sie dort manches finden. Ich wünsche Ihnen ein friedliches Fest und viel Spaß!   Änderung (Symptom) Ursache(n) Welches…

Weiterlesen

Probleme erst gegen Ende der Sequenz – mögliche Ursachen

Von A Fehlersuche, Jahrestipps, Peakverbreiterung, pH-Wert der Probe (bzw. des Probenlösungsmittels), Veränderung der Peakfläche, Veränderung der Retentionszeit, Veränderung des Chromatogramms

Der Fall Zu Beginn einer längeren Sequenz läuft alles bestens. Gegen Sequenz-Ende jedoch tauchen verstärkt Probleme auf, z. B. Geisterpeaks, Veränderung der Peakform und/oder der Peakfläche und nicht zuletzt Verschiebung der Retentionszeit. Welche Ursachen kommen in Frage? Die Lösung Es handelt sich hierbei wohl um Ursachen, die zeitabhängig sind. Nachfolgend eine Auswahl von Symptomen und möglichen Ursachen: Temperatur zum Ersten: Druck-, evtl. auch Peakfläche-Schwankungen Es finden manchmal aufgrund einer niedrigen Temperatur im Probengeber Nachfällungen statt, die erst später einsetzen und zu folgenden Problemen führen können: Verstopfung der Injektionsnadel, Niederschlag am Siebchen direkt am Säulenkopf usw. Vorgehen, um ein kommendes Problem rechtzeitig zu erkennen, ob also Gefahr für Niederschlag besteht (Tipp von Jens Braun, BioChem): Probelösung einfach kalt machen und anschließend zentrifugieren Temperatur zum Zweiten: Bessere Peakform, Zunahme der Peakfläche Wenn die Standard-/SST-lösung organischer als der Eluent/Anfangsgradient ist, entsteht Fronting, mitunter bei sehr frühen Peaks auch „Buckel“. Wenn nun aus jener Lösung im Laufe der Sequenz häufig injiziert wird, kann das organische Lösungsmittel u.U. verdampfen, Ergebnis: Aufkonzentrierung der Probe im Vial, die Peakfläche nimmt zu und dadurch, dass nun die Probelösung womöglich „Eluent-ähnlicher“ geworden ist, ergibt sich eine Verbesserung der Peakform Temperatur zum Dritten: Zunahme der Peakfläche und/oder größerer Variationskoeffizient Eine…

Weiterlesen

Die Kleinen im Sommer: Geisterpeaks – aber erst „später“ Verbesserung der Empfindlichkeit

Von Allgemein, Behältnisse, C - Einführungen, Überblicke, Routine-Tipps, Wartung, allgemeine Hinweise, Geisterpeaks & negative Peaks, Methodentransfer, Monatstipp, Nachweisgrenze, Optimierung, Veränderung des Chromatogramms

Geisterpeaks – aber erst „später“
Verbesserung der Empfindlichkeit

Geisterpeaks, die „später“ oder erst in einigen Tagen erscheinen

Geisterpeaks erscheinen meist plötzlich. Man wundert sich wieso, hat man doch an den chromatographischen Bedingungen nichts geändert. Nun, es sind schon einige Situationen denkbar, in denen Geisterpeaks erst nach einer gewissen Zeit zu sehen sind. Nachfolgend einige Beispiele dazu (zur Problematik von Geisterpeaks ab und an siehe auch diesen Tipp):

          Katalytische Wirkung des Kieselgels

  • Kieselgel ist ein guter Feststoffkatalysator; bei längeren Läufen werden womöglich nur solche Substanzen verändert, die lange an der Oberfläche des Materials haften und somit spät eluieren. Sind solche Substanzen in der Probe enthalten, so erscheinen evtl. Geisterpeaks. Fehlen diese Komponenten, eluieren nur Komponenten, die schwache Wechselwirkungen mit der stationären Phase eingehen, die Geisterpeaks fehlen

    Verstärkt Hydrolyse durch ungewollte Veränderung chromatographischer Parameter
  • Stellen wir uns eine lange Sequenz vor: bei den gegen Ende der Sequenz zu injizierenden Proben herrscht im vial evtl. eine andere Temperatur als bei den Proben davor (z. B. Temperaturdifferenz Kühlschrank-Probengeber oder Temperaturgradient im Probenraum des Probengebers)
  • Auch folgendes wäre im Falle einer langen Sequenz denkbar: der pH-Wert im vial ändert sich mit der Zeit – aus welchen Gründen auch immer – und ab einem bestimmten pH-Wert sind allerlei Veränderungen der Probe denkbar und somit erscheinen zusätzliche Substanzen erst nach einer gewissen Zeit

    Oxidationsprodukte
  • Man/frau arbeitet mit Tetrahydrofuran (THF) in der mobilen Phase; ein Blindgradient zu Beginn zeigt keine Probleme. Mögliche Peroxide aus dem THF sammeln sich allerdings erst mit der Zeit an der Säule und erscheinen nach einer Zeit X als Geisterpeaks gegen Ende des Gradienten. Man/frau wundert sich wieso erst nach so und so vielen Stunden bei den Nachtläufen Geisterpeaks auftauchen…
  • Trotz sicherlich Endreinigung der Dichtungen vor Auslieferung, kann eine Rest-Fettschicht auf deren Oberfläche vorhanden sein. Deren Oxidationsprodukten (z. B. N-Oxide) können als Geisterpeaks erscheinen, die Anzahl und der Zeitpunkt kann von der Arbeitsweise abhängig sein: Anzahl der Läufe, Temperatur, Eluent, Zusammensetzung der mobilen Phase bei der Lagerung usw.Auffüllen des Vorratsgefäßes
  • In Acetonitril können Polymere entstehen. Wird das Vorratsgefäß stets aufgefüllt sobald ca. die Hälfte des Lösungsmittels aufgebraucht ist, gibt es keine Probleme, deren Konzentration ist gering. Erfolgt das Auffüllen nicht immer zum gleichen Zeitpunkt, kann passieren, dass bei geringer Flüssigkeitsmenge im Vorratsgefäß die Polymer-Konzentration derart hoch ist, dass neben „Wellen“ in der Basislinie auch Geisterpeaks erscheinen. Also frei nach Giovanni Trapattoni: „Flasche voll: Keine Probleme, Flasche (fast) leer: Probleme

Verbesserung der Empfindlichkeit

Über das Thema haben wir uns an dieser Stelle bereits mehrfach unterhalten. Da es wichtig ist, möchte ich weiter unten die aus meiner Sicht effektivsten Maßnahmen verdichtet zusammenfassen. Das Ziel lautet: Möglichst große, schmale, symmetrische Peaks.

  1. Optimale Bedingungen bezüglich Hard- und Software:
  • *Geringes Dispersionsvolumen (vereinfacht: Totvolumen)
  •   Notwendig bei bestimmten Analyten: Inerte/Bio-inerte/Metall-freie Anlage und inerte bzw. Peek-ummantelte Säule,    silanisierte vials
  • *Falls möglich, mit Luftsegmenten zwischen Probengeber und Säule arbeiten, um eine Verdünnung der Substanzzone
    zu verhindern
  • *Optimale Settings, z. B. mindestens 40 Datenpunkte, 16 nm Spalt, 50 ms Zeitkonstante, Rauschen-Unterdrückung
  •   Je nach verwendeter Detektionsart und Analyt-Stabilität das technisch maximal Machbare nutzen, z. B: Max-
    Light/LightPipe (UV), Triple Quad MS (LC-MS), ICP-MS
  1. Chromatographische Parameter:
  • Nach Möglichkeit kurze, in jedem Fall dünne Säulen; wenn die Voraussetzungen gegeben sind, evtl. auch an Kapillaren denken
  • Core Shell- (1,3-1,7 µm) oder falls es porös sein muss, Sub2µm-Material
  • *Stets schwächeres Probelösungsmittel im Vergleich zum Anfangsgradienten verwenden: Anreicherung der
    Substanzzone am Säulenkopf; ggf. mit Hilfe eines Schaltventils Anreicherung in einer Trap-Säule in Erwägung ziehen
  • *Steiler Gradient mit 30-40 % B beginnend
  • *Bei thermostabilen Komponenten tendenziell bei höheren Temperaturen chromatographieren

Die mit „*“ versehenen Maßnahmen sind relativ schnell umzusetzen, der Rest ist mit einem gewissen Aufwand verbunden, der Nutzen kann nur individuell bewertet werden.

Regulierter Bereich, feststehende Prüfvorschrift, geforderte Auflösung wird nicht erreicht – was ist möglich?

Von Apparatur, Auflösung, B Optimierung, Bodenzahl, Einstellparameter, HPLC-Tipps, Injektionsvolumen, Optimierung, Probenlösungsmittel, Totvolumen, Veränderung des Chromatogramms

Der Fall Sie arbeiten in einem regulierten Bereich und sind an strenge Prüfvorschriften gebunden. In einer solchen lautet die Forderung: „Auflösung R größer 1,5“, aber gerade diesen Wert erreichen Sie aktuell nicht. Welche regel-konforme Handgriffe kämen in Frage? Die Lösung Was möglich ist, hängt letzten Endes davon ab, wie genau die Angaben in der betreffenden PV sind. Ist in der Tat restlos alles – von der Eluentenzusammensetzung bis zu den Einstellungen („Settings“) – vorgegeben, so können Sie de facto es nur mit einer neuen Säule versuchen. Ist die PV etwas „weicher“, d.h. es sind nur die wichtigsten Parameter wie Säule,…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Nicht-endcappede Phasen – ein Auslaufmodell?

Von Auflösung, B Optimierung, Bodenzahl, HPLC-Tipps Demo, Methodenentwicklung, -Transfer und -Optimierung, Optimierung, polare Komponenten, Säulenauswahl, Stationäre Phase, Veränderung des Chromatogramms

Der Fall

In den letzten Jahren wurde eine Reihe moderner C18- sowie polarer RP-Phasen eingeführt. Da wären beispielhaft zu nennen: Chemisch geschützte („embedded“ phases), hydrophil endcappede sowie Mixed Mode Phasen und was die Matrix betrifft: Hybrid-, Core Shell- oder monolithische Phasen. Diese Materialien weisen vielfach Vorteile auf. Heißt es nun, dass bei der Entwicklung einer neuen Methode der Einsatz einer solchen modernen Phase die richtige Wahl wäre? Sollte man also nicht-endcappede Phasen als eine alte Technologie „ad acta“ legen?

Die Lösung

Nein. Für die Trennung von Substanzen mit ähnlicher Hydrophobie, aber mit Unterschieden in der Anordnung von Substituenten am Molekül oder von Doppelbindungen in einer Seitenkette (α, β-Isomerie, Stellungsisomerie) oder stark polare Komponenten sind Restsilanolgruppen für die Selektivität sehr wichtig. Dies wird an drei Beispielen demonstriert:

Beispiel 1: Trennung von Steroiden

Abb. 1: Trennung von drei Steroiden an zwei endcappeden (oben, Mitte) und an einer nicht endcappeden C18-Phase (unten), Erläuterungen siehe Text.

Das obere und mittlere Chromatogramm zeigen die Injektion von drei Steroiden (α, β-Isomere) an zwei modernen, hydrophoben Phasen. Steroid Nr. 2 und 3 koeluieren. Die Trennung gelingt an Resolve C18, einem älteren, nicht endcappeden Material, siehe unteres Chromatogramm in Abbildung 1.

Beispiel 2: Trennung von starken Basen

Abb. 2: Injektion einer Mischung von drei polaren Komponenten auf eine silanophile (links) und eine hydrophobe, endcappede C18-Phase (rechts), Erläuterungen, siehe Text.

Auf der rechten Seite der Abbildung 2 wird die Injektion von Uracil (inerte Komponente), Pyridin, Benzylamin und Phenol an einer modernen endcappeden C18-Säule gezeigt. Die zwei Basen koeluieren (erster Peak), was vollkommen nachvollziehbar ist: Man kann nicht erwarten, dass eine hydrophobe, gründlich endcappede Phase eine gute polare Selektivität aufweist. Und das kann zu falschen Schlussfolgerungen führen: Eine gute Peaksymmetrie suggeriert im Routinealltag eine gute Selektivität… Das linke Chromatogramm zeigt die Injektion auf eine „alte“, stark silanophile Phase, Hypersil ODS, das Ergebnis lautet: Eine hervorragende Selektivität für die zwei starke Basen bei gleichzeitig sehr langsamen Kinetik (starkes Tailing). Dass weitere polare Phasen wie beispielsweise eine C7-fluorierte Phase eine ebenso gute Selektivität aufweist (siehe mittleres Chromatogramm) versteht sich von selbst.

Beispiel 3: Injektion einer Mischung diverser Komponenten inkl. drei Isomeren (o-, m-, p-Toluidin) 

An mehreren Säulen von Waters erhält man nahezu das gleiche Bild, die Chromatogramme sehen recht ähnlich aus, für die drei Isomere ergeben sich zwei Peaks, siehe Pfeile in Abbildung 3. Erst beim Einsetzen einer nicht-endcappeden Phase (Abbildung 4) sind für die drei Isomere drei Peaks zu sehen. Ferner: Betrachte bei den letzten zwei Peaks die Elutionsumkehr. Auch hier: Eine fluorierte Phase (Abbildung 4, rechts) zeigt eine noch bessere polare Selektivität bei einer noch langsameren Kinetik, siehe dazu das auffallend starke Tailing.

Abb. 3 Trennung von polaren und apolaren Aromaten inkl. Stellungsisomeren, Erläuterung, siehe Text

Abb. 4 Trennung von polaren und apolaren Aromaten inkl. Stellungsisomeren, Erläuterung, siehe Text

Das Fazit

Für eine Vielzahl üblicher Trennprobleme sind moderne, endcappede Materialien zweifelsohne die richtige Wahl. Es gibt jedoch Fälle, in denen gerade Restsilanolgruppen eine Erhöhung der Selektivität bedingen. Das ist generell der Fall, wenn für die Selektivität zusätzliche Ionenaustausch-Wechselwirkungen notwendig sind wie beispielsweise bei Stellungsisomeren, Phospholipiden und starken Säuren/Basen. Eine evtl. suboptimale Peakform muss oft zu Gunsten einer guten polaren Selektivität in Kauf genommen werden. Es gilt folgende vereinfachte Regel: Je ähnlicher die Moleküle sind, umso notwendiger sind zusätzliche polare/ionische Wechselwirkungen für deren Trennung, umso langsamer die Kinetik bei der Desorption solcher Moleküle von der stationären Phase. Zur Auswahl und zum Vergleich von RP-Säulen siehe „Colona Vergleich und Auswahl von HPLC-RP-Säulen“ , ferner auch das Dokument „Einfache Tests zur Charakterisierung von HPLC-RP-Säulen“.

 

Ist es vorteilhaft für mich, diesen Parameter zu erhöhen/erniedrigen?  

Von B Optimierung, Eluent, HPLC-Tipps, Optimierung, pH-Wert des Eluenten, Säule, Veränderung des Chromatogramms

Der Fall In diesem HPLC-Tipp haben wir uns über folgenden Tatbestand unterhalten: Wenn ich in der HPLC einen physikalischen Parameter verändere, ist das Ergebnis selten eindeutig „gut“ oder „schlecht“. Je nach Betrachtungsweise bzw. Anforderungen überwiegen Vor- oder eben Nachteile. Dies gilt analog auch für chemische Parameter. Hier wollen wir stellvertretend sechs solcher betrachten, siehe Tabelle 1. Die Lösung   Was Nachteile Vorteile Erhöhung der Temperatur In der Regel Abnahme der Selektivität und der Lebensdauer der Säule, ferner erhöhte Gefahr für  Zersetzung von thermolabiler Analyten Abnahme der Retentionszeit und des Druckes, Verbesserung der Peakform und dadurch Zunahme der Peakkapazität (Anzahl der…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Der RP-Gradient – eine „andere“ Welt…

Von Apparatur, B Optimierung, Chromatogramm, Gradient, HPLC-Tipps, Methodenentwicklung, -Transfer und -Optimierung, Methodentransfer, Peakverbreiterung, Totvolumen, Veränderung der Retentionszeit, Veränderung des Chromatogramms, Verweilvolumen

Der Fall Chromatographische Gesetzmäßigkeiten gelten grundsätzlich stets, unabhängig davon, ob es sich um HPLC, IC oder GC handelt. Und natürlich auch, ob isokratische oder Gradiententrennungen vorliegen. Jedoch gibt es bei LC-Gradienten einige Charakteristika, die schon etwas „eigen“ sind und sie man sinnvollerweise im Kopf behalten sollte. Dies hilft im Alltag, Ergebnisse richtig zu deuten und Vorhersagen bei Optimierungsläufen ein wenig sicherer zu treffen. Schauen wir uns nun zwei-drei typische an. Die Lösung Vorbemerkung: Die weiter unten aufgeführten Hinweise sind mit Hilfe entsprechender Formeln leicht zu belegen. Wir verzichten allerdings an dieser Stelle auf „Mathematik“ und konzentrieren uns lediglich auf die…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Andauernde Probleme beim Methodentransfer? Ein Reisegrund…

Von A Fehlersuche, Apparatur, Einstellparameter, HPLC-Tipps, Methodenentwicklung, -Transfer und -Optimierung, Methodentransfer, Veränderung des Chromatogramms

Der Fall Eine Methode wird transferiert. Trotz idealen Voraussetzungen, das wären beispielsweise identische Hard- und Software in den beteiligten Labors, qualifizierte Geräte, vorhandenes Know-how der AnwenderInnen hier und dort usw. sind die Ergebnisse alles andere als zufriedenstellend. Die auftretenden Probleme können vielfältiger Natur sein: Starkes Basislinie-Rauschen, Verschiebung der Retentionszeit, mangelnde Reproduzierbarkeit der Peakflächen etc. Mehrere E-Mails oder auch Video-Valls bringen keine wirkliche Lösung. Was ist zu tun? Die Lösung Gleich zu Beginn meine Empfehlung: Handelt es sich um eine wichtige Methode und ist das Problem nach drei bis vier E-Mails/Video-Calls nicht zu lösen? Fahren/fliegen Sie hin. „Sie“ ist der/die Anwender(in)…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Kommen die Peaks früher, wird die Trennung wohl schlechter – oder?

Von Auflösung, C - Einführungen, Überblicke, Routine-Tipps, Wartung, allgemeine Hinweise, HPLC-Tipps, Veränderung der Retentionszeit, Veränderung des Chromatogramms

Der Fall Es gibt in der HPLC mehrere Möglichkeiten, die Peaks nach vorne zu schieben. Dabei rücken sie zusammen, die Auflösung nimmt natürlich ab. So lautet eine (vor)schnelle Schlussfolgerung. Das stimmt allerdings nicht immer. Wann nicht und warum? Die Lösung Betrachten wir hier ein klassisches RP-System. Ich kann die Wechselwirkungen zwischen Analyten und stationärer Phase wie folgt verringern, die Peaks eluieren dabei früher: Den organischen Anteil der mobilen Phase bzw. die Temperatur erhöhen, den pH-Wert verändern, schließlich kann ich eine polarere stationäre Phase verwenden. Wenn meine Substanzen nun sich chemisch ähneln und dementsprechend auch chromatographisch ähnlich verhalten – man spricht…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen

Warum macht nur ein Peak Probleme? (II)

Von A Fehlersuche, Chromatogramm, Gradient, HPLC-Tipps, Methodenentwicklung, -Transfer und -Optimierung, Methodentransfer, pH-Wert der Probe (bzw. des Probenlösungsmittels), pH-Wert des Eluenten, polare Komponenten, Systemeignungstest (SST), Veränderung der Peakfläche, Veränderung des Chromatogramms

Der Fall In diesem HPLC-Tipp haben wir uns darüber unterhalten, dass bestimmte Komponenten durch Adhäsion an vielen Oberflächen ganz oder teilweise irreversibel haften bleiben können. Deswegen sollte man im Falle des Falles auch an unwichtig anmutende Änderungen oder Unterschiede in den Abläufen und in den Utensilien von Labor zu Labor denken. Heute wollen wir schauen, welche, eher chemische Ursachen infrage kommen, wenn eben nur ein Peak (oder auch zwei) im Chromatogramm Probleme bereitet(en). Die Lösung Vorweg: Vermutlich ist der pH-Wert oder – genauer – seine Veränderung die wichtigste Ursache für das hier besprochene Problem und hier wiederum dürften folgende zwei…

Um diesen Beitrag einsehen zu können, musst du eine der HPLC-Tipps Datenbanken Lizenzen erwerben.

Weiterlesen