Zusammenfassung: Orthogonaler Text: Verwende eine „ganz“ andere Säule (z. B. statt einer C18 nun eine PFP oder eine Mixed Mode) und/oder einen anderen Eluenten (mobile Phase statt mit ACN nun mit MeOH) und injiziere erneut. Ähnliche Substanzen gehen wahrscheinlich (etwas) andere Wechselwirkungen mit der stationären Phase ein. Somit offenbart sich, dass ein symmetrischer Peak evtl. doch nicht homogen ist. Der Fall In den letzten zwei HPLC-Tipps haben wir folgendes gesehen: Eine Änderung von Einstellparametern („Settings“) sowie „Manipulationen“ der Probelösung stellen schnelle Möglichkeiten dar, die Peakhomogenität zu prüfen. Heute geht es um den orthogonalen Test. Was ist das und was „bringt“ er? Die Lösung Am Ende einer Methodenentwicklung kommt häufig die Frage auf: „Habe ich alle Peaks trennen können, oder liegt womöglich irgendwo im Chromatogramm doch eine Koelution vor“? Jetzt kommt der orthogonale Test ins Spiel – die Idee dahinter: Man verwende eine völlig andere stationäre Phase oder einen anderen Eluenten und injiziert erneut. Es ist ziemlich unwahrscheinlich, dass zwei oder drei Komponenten bei Verwendung zweier gänzlich (!) unterschiedlichen Säulen bzw. Eluenten in beiden Fällen völlig gleich starke Wechselwirkungen mit der stationären Phase eingehen. Wenn nun mit einem Eluenten an zwei unterschiedlichen Säulen oder mit zwei unterschiedlichen Eluenten an einer Säule…
Der Fall Vorbemerkung: Die Rede ist hier von RP-Phasen und von kleinen Molekülen, Biomoleküle ist eine ganz andere „Story“ ebenso wie Ionenaustauscher und HILIC … Als Faustregel gilt: 10-15 Säulenvolumina sollten reichen. Das Säulenvolumen kann in erster Näherung mit folgender empirischer Formel berechnet werden: Vs = tM x F/0,8 mit: Vs: Säulenvolumen in ml tM: Totzeit in min F: Fluss in ml/min Für eine 125 x 4 mm Säule beispielsweise (Fluss 1 ml/ min, Totzeit 1 min, Säulenvolumen ca. 1,25 ml), würden somit ca. 15-20 ml ausreichen. Nun, wie „gut“ ist diese Faustregel? Die Lösung Weiter oben vorgestellte Faustregel ist gut anwendbar für MeOH/Wasser- und ACN/Wasser-Eluenten ohne Zusätze. Ferner für eher saubere Proben, also keine Umwelt- oder biologische Proben bzw. stark kontaminierten Proben. Jetzt kommen wir zu den „schwierigeren“ Fällen, also zu Fällen, bei denen diese Faustregel ungenügend ist: Das notwendige Volumen zum Equilibrieren ist hier größer: Ältere Säulen, d.h. welche auf Basis von Kieselgel der ersten Generation (z. B. LiChrospher, Spherisorb, Bondapak, Supelcosil) sowie generell polare RP-Säulen wie Phenyl, Cyano oder Pentafluorphenyl, ferner Mixed-Mode-Phasen Stationäre Phasen mit größer spezifischer Oberfläche, z. B. 350 oder 400 m2/g. Solche haben i.d.R. kleine Porendurchmesser. Anders formuliert: Eine stationäre Phase mit 60 oder 80 Å-Poren…
Der Fall In diesem HPLC-Tipp haben wir uns über folgenden Tatbestand unterhalten: Wenn ich in der HPLC einen physikalischen Parameter verändere, ist das Ergebnis selten eindeutig „gut“ oder „schlecht“. Je nach Betrachtungsweise bzw. Anforderungen überwiegen Vor- oder eben Nachteile. Dies gilt analog auch für chemische Parameter. Hier wollen wir stellvertretend sechs solcher betrachten, siehe Tabelle 1. Die Lösung Was Nachteile Vorteile Erhöhung der Temperatur In der Regel Abnahme der Selektivität und der Lebensdauer der Säule, ferner erhöhte Gefahr für Zersetzung von thermolabiler Analyten Abnahme der Retentionszeit und des Druckes, Verbesserung der Peakform und dadurch Zunahme der Peakkapazität (Anzahl der…
- Optimale Zeitpunkt für die Elution der wichtigsten/kritischen Peaks
- Lagerung in MeOH/ACN
- Isokratische Stufe beim Gradienten im Fall von kurzen Säulen
„Optimale“ Elution – wann sollen meine wichtigsten Peaks eluieren?
Zunächst direkt die Aussage: Die optimale Elution für die interessierenden Peaks liegt nach ca. der drei bis fünffachen Totzeit („Front“, Injektionspeak). Sehen Sie zu, dass – wenn irgendwie möglich – wichtige/kritische Peaks bei einem Retentionsfaktor, k (k: Maß für die Stärke der Wechselwirkungen), von etwa drei bis fünf eluieren, d.h. eben nach der drei bis fünffachen Totzeit. Warum? Hier drei Gründe:
1. Ab hier etwa fängt der robuste Bereich an. Die Konsequenz: Konstante Retentionszeiten in der Routine; kleine ungewollte Veränderungen beim Eluenten oder bei der Temperatur wirken sich kaum aus
2. Dieser Bereich entspricht einem optimalen Bereich der Wechselwirkungen. Die Konsequenz: Optimaler Beitrag von k sorgt für eine gute Auflösung
3. In diesem Bereich ergibt sich eine gute Effizienz (gute Bodenzahl). Die Konsequenz: Keine übermäßige und damit störende Peakverbreiterung
In Methanol/Wasser gelagerte Säulen
Für längere Zeiträume (mehrere Wochen/Monate) eignen sich zur Lagerung von polaren RP-Phasen eher ACN/H2O- (mehr als ca. 60 % ACN) als MeOH/H2O-Gemische. Begründung: In einem ACN/H2O-Gemisch ist die Gefahr der Abspaltung durch Hydrolyse von kleinen, polaren funktionellen Gruppen, z. B. C8, C4, Diol, CN, PFP, Phenyl-Hexyl usw. – also das bekannte „Bluten“ der Säule – nahezu unerheblich. 100% Methanol dürfte dagegen unkritisch sein. Soweit, so gut. Nun, einige Hersteller liefern ihre Säulen in MeOH/H2O. Was kann jetzt passieren? Sie arbeiten mit einer recht polaren RP-Säule und die Trennung funktioniert bestens. Sie bestellen beim gleichen Hersteller erneut die gleiche Säule, mit dem Herstellerhinweis, dass es sich um die gleiche Charge wie bei der ersten Säule handelt, dennoch sieht Ihr Chromatogramm „scheußlich“ aus. Es mag sein, dass es sich um die gleiche Säulen-Charge handelt. Die zweite jedoch war beim Hersteller eventuell längere Zeit gelagert. Ein Teil der polaren funktionellen Gruppen, siehe weiter oben, ist womöglich abgespalten und man erhält im Fall von basischen Komponenten beispielsweise stark tailende Peaks, denn: Jene interagieren nun mit frei gewordenen aktiven Silanolgruppen.
„Gleiche“ Charge ist nicht für jeden dasselbe…
Es ist zweifelsohne sinnvoll, im Rahmen der Methodenentwicklung oder später bei der Validierung drei Säulenchargen auszutesten. Hier ist Vorsicht geboten: Wenn Sie beim Hersteller drei Säulen aus drei „verschiedenen Chargen“ bestellen, bekommen Sie meist tatsächlich drei Säulen aus drei unterschiedlichen Herstellungsschargen. Für manchen Hersteller jedoch bedeutet „unterschiedliche Chargen“, dass die Säulen zu unterschiedlichen Zeitpunkten gepackt worden sind, sie sind jedoch aus der gleichen Herstellungscharge…
Denke an MeOH bzw. MeOH/ACN-Gemische
Wasser aus dem Eluenten wird an der Oberfläche von polaren, stationären Phasen adsorbiert. Bei der Trennung von polaren Komponenten wirkt sich dies positiv aus. Als organisches Lösungsmittel eignet sich bei Trennungen von polaren Komponenten tendenziell eher Methanol als Acetonitril. Erwarten Sie nicht ausschließlich stark polare Komponenten sondern auch moderat-polare und evtl. auch neutrale (apolare) Komponenten? Für diesen Fall folgender Vorschlag: Wenn Sie Ihren Gradienten beispielsweise mit 20% B starten und auf 80% B hochfahren möchten, könnten Sie mit 10% MeOH/10% ACN starten und dann auf 40% MeOH/40% ACN hochfahren: Sie nutzen in diesem Fall die gute polare Selektivität durch das Methanol und die gute Peakform durch das ACN (geringe Viskosiität, scharfe Peaks). Generell gilt: Eine ternäre Mischung, also Wasser bzw. Puffer-ACN-MeOH, erweist sich bei einer großen Polaritäts-Bandbreite der Komponenten in der Probe oft als vorteilhaft. Dies gilt auch und gerade bei isokratischen Trennungen.
Großes Verweilvolumen und kleines Säulenvolumen…
Ein großes Verweilvolumen („Dwell“- oder „Delay-Volume“) bei einer Gradientenanlage bedeutet, dass zu Beginn des Gradienten eine isokratische Stufe vorgeschaltet ist. Eine solche mag mitunter etwas Positives bewirken: Manche Peaks am Chromatogramm-Anfang werden besser abgetrennt, als wenn der Gradient „sofort“ an der Säule wäre und dort direkt wirkte. Bei einer kurzen Säule jedoch „sieht“ der Gradient im Fall eines längeren isokratischen Schrittes am Anfang nur einen Teil der Säule, d.h. es werden im schlimmsten Fall nur 50% der Säulenlänge ausgenutzt. Die Peaks werden nach hinten „gestaucht“, bei mehr als 10-15 Peaks werden die letzten Peaks evtl. schlecht abgetrennt.
Der Fall Bekanntlich befindet sich auf den Säulen ein Pfeil, folglich kann die Säule in Pfeilrichtung richtig eingebaut werden. Wenn ich nun in meinen Seminaren empfehle bei Bedarf die Säule um zu drehen, ernte ich vielfach misstrauische Blicke; das ist bei weniger erfahrenen KollegInnen völlig verständlich. Also direkt die Frage: Kann man/sollte man die Säule umdrehen? Die Lösung Um gleich noch vor der Erklärung die Antwort zu geben: Ja, bis auf eine Ausnahme eindeutig, ja! Diese Maßnahme kann nämlich mit zwei positiven Aspekten in Verbindung gebracht werden: Während des Einsatzes der Säule kann sich mit der Zeit am Säulenkopf einiges…
Der Fall Der Säulen gibt es genügend… Die Bezeichnungen sind oft Fantasienamen, vom jeweiligen Firmenmarketing kreiert. Oft jedoch erhält man durch den Namen bzw. die verwendete Abkürzung Hinweise auf Eigenschaften des Materials oder auch seine (vermeintliche) Eignung für bestimmte Trennprobleme. Nachfolgend einige Beispiele für solche Namensgebungen: JUPITER: Der Name, an den größten Himmelskörper in unserem Planetensystem angelehnt, soll auf den großen Porendurchmesser von 300 °A hinweisen (Phenomenex). GEMINI (TWIN-Technologie): Siliziumatome in der Kieselgelmatrix dieses Hybridsmaterials sind über zwei Bindungen mit organischen Molekülen gebunden, während die Konkurrenz nur eine Bindung verwendet (Phenomenex). HALO: Aus dem Englischen: (Heiligen)Schein, Lichtkegel, (Mond)Ring, indirekter Hinweis…
Der Fall Auch nach über 50 Jahren kommerziell erhältlichen HPLC-Säulen werden fortan neue stationäre Phasen eingeführt – und dies mit ungebremster Intensität. Heute möchte ich Ihnen einige der neuere Materialien aus dem Bereich RP, HILIC, Mixed Mode vorstellen, wobei die klaren Grenzen von angenommenen Mechanismen immer stärker verschmelzen. Es liegt auf der Hand, dass an dieser Stelle diese Kurzübersicht nur eine subjektive, stark vereinfachte Momentaufnahme sein kann. Was gibt es nun Neues? Nachfolgend eine (sehr) kleine Auswahl. Die Lösung Die Matrix Poröses Material In den letzten Jahren sind mehrere 1,3-1,9 µm-Phasen eingeführt worden, z. B: Fortis 1,7 µm mit 380…
Der Fall Mit einigen Anwendern habe ich vor Ort ein Paar einfache Optimierungsexperimente durchgeführt. Wir haben einiges ausprobiert, nachfolgend werden 1-2 Ergebnisse vorgestellt. Uns ging es vor allem um die Frage: Was ist mit einfachen Mitteln möglich und was „bringt“ wann, was? Die Lösung Vorbemerkung: In den Abbildungen weiter unten werden Chromatogramm-Ausschnitte aus längeren Läufen gezeigt. Man betrachte Abb. 1. Es handelt sich um die Injektion von 50 µl einer recht komplexen Probe (Linearer Puffer/ACN-Gradient, Fluss: 1,6 ml/min, Kromasil C18, 5µm). Abb. 1 Injektion einer 50 µl Probe bei F=1,6 ml/min, Details, siehe Text Im vorliegenden Fall interessiert am meisten…
Der Fall Man findet bei den Angaben zu den physikalisch-chemischen Eigenschaften von RP-stationären Phasen in Datenblättern von Herstellern u. a. gelegentlich auch die Angabe „% C“. Man geht nun davon aus, dass je höher diese Zahl ist (also der Kohlenstoffgehalt der stationären Phase), um so stärker die Belegung und damit auch der hydrophobe Charakter der entsprechenden Phase ist. Stimmt das? Die Lösung Nicht unbedingt! Man muss auch die physikalisch-chemischen Eigenschaften des Kieselgels in Betracht ziehen – hier zunächst einmal konkret dessen Packungsdichte, siehe dazu Tabelle 1, in der zwei stationäre Phasen von Waters verglichen werden. Bondapak hat zwar mit 9,80%…