Der Fall Chromatographische Gesetzmäßigkeiten gelten grundsätzlich stets, unabhängig davon, ob es sich um HPLC, IC oder GC handelt. Und natürlich auch, ob isokratische oder Gradiententrennungen vorliegen. Jedoch gibt es bei LC-Gradienten einige Charakteristika, die schon etwas „eigen“ sind und sie man sinnvollerweise im Kopf behalten sollte. Dies hilft im Alltag, Ergebnisse richtig zu deuten und Vorhersagen bei Optimierungsläufen ein wenig sicherer zu treffen. Schauen wir uns nun zwei-drei typische an. Die Lösung Vorbemerkung: Die weiter unten aufgeführten Hinweise sind mit Hilfe entsprechender Formeln leicht zu belegen. Wir verzichten allerdings an dieser Stelle auf „Mathematik“ und konzentrieren uns lediglich auf die…
Der Fall Eine Methode wird transferiert. Trotz idealen Voraussetzungen, das wären beispielsweise identische Hard- und Software in den beteiligten Labors, qualifizierte Geräte, vorhandenes Know-how der AnwenderInnen hier und dort usw. sind die Ergebnisse alles andere als zufriedenstellend. Die auftretenden Probleme können vielfältiger Natur sein: Starkes Basislinie-Rauschen, Verschiebung der Retentionszeit, mangelnde Reproduzierbarkeit der Peakflächen etc. Mehrere E-Mails oder auch Video-Valls bringen keine wirkliche Lösung. Was ist zu tun? Die Lösung Gleich zu Beginn meine Empfehlung: Handelt es sich um eine wichtige Methode und ist das Problem nach drei bis vier E-Mails/Video-Calls nicht zu lösen? Fahren/fliegen Sie hin. „Sie“ ist der/die Anwender(in)…
Der Fall Es gibt in der HPLC mehrere Möglichkeiten, die Peaks nach vorne zu schieben. Dabei rücken sie zusammen, die Auflösung nimmt natürlich ab. So lautet eine (vor)schnelle Schlussfolgerung. Das stimmt allerdings nicht immer. Wann nicht und warum? Die Lösung Betrachten wir hier ein klassisches RP-System. Ich kann die Wechselwirkungen zwischen Analyten und stationärer Phase wie folgt verringern, die Peaks eluieren dabei früher: Den organischen Anteil der mobilen Phase bzw. die Temperatur erhöhen, den pH-Wert verändern, schließlich kann ich eine polarere stationäre Phase verwenden. Wenn meine Substanzen nun sich chemisch ähneln und dementsprechend auch chromatographisch ähnlich verhalten – man spricht…
Der Fall In diesem HPLC-Tipp haben wir uns darüber unterhalten, dass bestimmte Komponenten durch Adhäsion an vielen Oberflächen ganz oder teilweise irreversibel haften bleiben können. Deswegen sollte man im Falle des Falles auch an unwichtig anmutende Änderungen oder Unterschiede in den Abläufen und in den Utensilien von Labor zu Labor denken. Heute wollen wir schauen, welche, eher chemische Ursachen infrage kommen, wenn eben nur ein Peak (oder auch zwei) im Chromatogramm Probleme bereitet(en). Die Lösung Vorweg: Vermutlich ist der pH-Wert oder – genauer – seine Veränderung die wichtigste Ursache für das hier besprochene Problem und hier wiederum dürften folgende zwei…
Der Fall Sie wenden eine Routinemethode an, alle Peaks im Chromatogramm verhalten sich wie von Ihnen erwartet: Die Retentionszeit bleibt konstant, die Peakfläche ebenso und die Peakform ist soweit OK. Nur ein (oder zwei) Peak(s) macht(en) Probleme, z. B: Nur dieser eine Peak ist breit und/oder seine Fläche ändert sich permanent und/oder evtl. ändert sich auch seine Retentionszeit. Was kann die Ursache sein? Die Lösung Wir beginnen mit dem, was nicht sein kann: Nachdem die übrigen Peaks sich „anständig“ verhalten, können wir alle Substanz-unspezifische Faktoren (die ja alle Peaks betreffen würden – mal stärker, mal schwächer, aber eben alle) ausschließen:…
Peaks eluieren früher und ihre Peakbreite hat zugenommen – eine mögliche Ursache: Wir gehen davon aus, dass weder die Packungsqualität noch eine Verschiebung des pH-Wertes als Ursache infrage kommt. Der Grund könnte u.a. Schmutz an der Oberfläche der stationären Phase sein. Tritt dieser Fall ein, so ist ein Teil der aktiven Zentren belegt, die Wechselwirkungen nehmen ab, die Peaks eluieren früher. Ferner führt die geringer gewordene Zahl der aktiven Zentren, die für eine Wechselwirkung mit den zu trennenden Komponenten nun zur Verfügung stehen, zu einer lokalen Überladung der Säule. Das ist die Ursache für die Peakverbreiterung. Auf der Seite der…
Der Fall Ca. 70-80% der RP-Trennungen in der Routine sind Gradientenläufe. Den meisten Anwendern sind die Vorteile der Gradientelution geläufig, so z. B: Trennung von polaren und apolaren Komponenten in einem Lauf, merklich kürzere Trenndauer im Vergleich zu isokratischen Läufen, Erniedrigung der Bestimmungsgrenze und nicht zuletzt: Ein Übersichtsgradient ist ein hervorragender erster Schritt bei der Methodenentwicklung einer unbekannten Probe. Was ist nun bei Gradiententrennungen grundsätzlich „anders“ im Vergleich zu isokratischen Trennungen? Die Lösung Isokratische und Gradiententrennungen stellen zwar keine gänzlich andere Welten dar, gibt es doch einige entscheidende Unterschiede. Nachfolgend greife ich stellvertretend zwei Unterschiede heraus. Interessierten Lesern sei auf…
Der Fall Wir haben uns bereits über die Bedeutung dieser Begriffe sowie deren Einfluss auf die Trennung unterhalten, nur: In meinen Seminaren stelle ich häufig fest, dass diese Größen uneinheitlich, teilweise auch falsch benutzt werden. Auch ihr Einfluss auf die Trennung wird unter- oder überschätzt. Lasst uns diese Dinge noch einmal definieren, die „alten“ Leser mögen diese Wiederholung mir nachsehen. Die Lösung Vorbemerkung Aus praktischer Sicht gilt natürlich folgendes: Wenn diese Begriffe anders als hier definiert, benutzt werden und alle Beteiligte das gleiche darunter verstehen, gibt es selbstverständlich absolut keinen Handlungsbedarf. Nun zu den Definitionen: Totzeit oder Mobilzeit („dead time“,…
Der Fall Ist die Probelösung nicht identisch mit der mobilen Phase (bzw. mit der Anfangszusammensetzung vom Eluent A bei der Gradientelution) kann dies einen Einfluss auf das Chromatogramm haben. Wie macht sich das nun genau bemerkbar? Die Lösung Halten wir zunächst wie folgt fest: „Andere“ Probelösung kann vielerlei bedeuten: Andere Zusammensetzung, anderes organisches Lösungsmittel, anderer pH-Wert, andere Pufferstärke/anderes Salz etc. Konzentrieren wir uns auf die RP-Chromatographie und betrachten folgende drei Fälle: Die Probelösung kann polarer, apolarer oder einfach „anders“ als der (Anfangs-)Eluent sein. 1. Polarer – also im Sinne der RP-Chromatographie schwächer Diese Situation sollte stets angestrebt werden, denn: Wenn…
Der Fall Wenn der Fluss sich ändert, ändert sich auch die Peakform – mal stärker, mal schwächer. So weit so gut. Was machen nun die Peakhöhe und die Peakfläche? Ändern sie sich ebenso und wenn ja, ist dies merklich? Was wären schließlich die Konsequenzen? Die Lösung Es muss grundsätzlich zwischen Konzentrations- und Massen-empfindlichen Detektoren unterschieden werden: Der UV- (UV-Vis, DAD) und der Fluoreszenzdetektor beispielsweise sind Konzentrations-empfindliche Detektoren, der Massendetektor bei der LC/MS- bzw. LC/MS/MS-Kopplung ein Massen-empfindlicher Detektor. D.h. im ersten Fall ist das Signal von der Konzentration, im Zweiten von der Masse der Analyten abhängig. Bei einem Konzentrations-empfindlichen Detektor verändert…