Zusammenfassung: Orthogonaler Text: Verwende eine „ganz“ andere Säule (z. B. statt einer C18 nun eine PFP oder eine Mixed Mode) und/oder einen anderen Eluenten (mobile Phase statt mit ACN nun mit MeOH) und injiziere erneut. Ähnliche Substanzen gehen wahrscheinlich (etwas) andere Wechselwirkungen mit der stationären Phase ein. Somit offenbart sich, dass ein symmetrischer Peak evtl. doch nicht homogen ist. Der Fall In den letzten zwei HPLC-Tipps haben wir folgendes gesehen: Eine Änderung von Einstellparametern („Settings“) sowie „Manipulationen“ der Probelösung stellen schnelle Möglichkeiten dar, die Peakhomogenität zu prüfen. Heute geht es um den orthogonalen Test. Was ist das und was „bringt“ er? Die Lösung Am Ende einer Methodenentwicklung kommt häufig die Frage auf: „Habe ich alle Peaks trennen können, oder liegt womöglich irgendwo im Chromatogramm doch eine Koelution vor“? Jetzt kommt der orthogonale Test ins Spiel – die Idee dahinter: Man verwende eine völlig andere stationäre Phase oder einen anderen Eluenten und injiziert erneut. Es ist ziemlich unwahrscheinlich, dass zwei oder drei Komponenten bei Verwendung zweier gänzlich (!) unterschiedlichen Säulen bzw. Eluenten in beiden Fällen völlig gleich starke Wechselwirkungen mit der stationären Phase eingehen. Wenn nun mit einem Eluenten an zwei unterschiedlichen Säulen oder mit zwei unterschiedlichen Eluenten an einer Säule…
Der Fall Wie beim vorherigen HPLC-Tipp geht es auch heute um die Frage, ob ein Peak homogen ist oder womöglich doch eine Koelution vorliegt. Beim letzten Mal haben wir gesehen, dass eine Änderung der Einstellparameter („Settings“) durchaus hilfreich sein kann. Heute steht die Probelösung im Focus: Schnell durchzuführende „Manipulationen“ bzgl. Probelösung können ebenso helfen. Welche wären das? Die Lösung Verdünne die Probelösung oder injiziere weniger Wir alle überladen öfters als gedacht die „arme“ Säule. Ergebnis: Verschlechterung der Auflösung. Eine lokale Überladung der Säule macht sich vor allem am Anfang des Chromatogramms bemerkbar; dort eluieren in einem RP-System polare Komponenten, die zusätzliche polare Wechselwirkungen mit der Oberfläche der stationären Phase eingehen können („Dualer Mechanismus“). Die Devise lautet: Probelösung, also Diluent, einfach mit Wasser verdünnen oder vielleicht noch einfacher: Weniger injizieren. In Abbildung 1, rechts, wird die Injektion von 20 µl Acetophenon gezeigt: Der erste Peak ist eine Verunreinigung, der zweite die Hauptkomponente Acetophenon. Anschließend wurde lediglich Eluent injiziert, linkes Chromatogramm. D.h. hier wurde der Memory-Effekt ausgenutzt: Es befindet sich häufig ein kleiner Rest der Probe an der Nadel, der nicht immer 100% weggespült wird. Wie man leicht erkennt, ist die Verunreinigung sauber, Acetophenon dagegen nicht: Auch mit 20 µl kann eine…
Im – jedenfalls kalendarischen …– Sommer wollen wir uns mit kleinen, knackigen Tipps beschäftigen. Heuer geht es um „die 80 %-Regel“, „Vorteile von Methanol“ und „Mach´ Probelösung und Eluent möglichst ähnlich“. „80%-Regel“ Bei einer Routine-Methode steht i.d.R. Robustheit an erster Stelle, das heißt beispielsweise: Ich erwarte reproduzierbare Ergebnisse und die Säule soll möglichst lange halten. Es hat sich gezeigt, dass ein „Puffer“, also ein Abstand, von ca. 20 % von einem Grenzwert Sicherheit liefert. Nachfolgend einige Beispiele: Einige GPC/SEC-Säulen sind laut Datenblatt bis 100 bar stabil; das Nicht-Überschreiten von 80 bar im Dauerbetrieb beschert eine lange Lebensdauer Manch ‘ein Säulenofen ist von 5 – 80 °C spezifiziert; an beiden Grenzen – also ca. 6 °C sowie ca. 70 °C – ist eine richtige und präzise Temperatur-Einstellung nicht immer gewährleistet. Messungen in diesen Bereichen sind oft nicht reproduzierbar Bei einer Reihe von Säulen wird als pH-Wert-Verträglichkeit der Bereich 2 – 8 angegeben; im Dauerbetrieb würde ich allerdings bei derart spezifizierten stationären Phasen nicht unter ca. pH von 2,4 und nicht über ca. pH 6,5 gehen: Im Sauren können kleine funktionelle Gruppen hydrolysiert werden („Bluten“ der Säule) und ab ca. pH 7,0 kann sich das Kieselgel auflösen. Denke in diesem Zusammenhang auch…
Der Fall Eine Methode läuft an zwei identischen HPLC-Anlagen. Eine der zwei Anlagen erzeugt problematische Chromatogramme, z. B. Drift der Basislinie, „Buckel“ oder Geisterpeaks. Woran kann es liegen? Die Lösung Bemerkung: Die hier besprochenen Probleme machen sich insbesondere bei niedrigen Wellenlängen und bei hochauflösenden Massenspektrometern bemerkbar. Eine mögliche Erklärung wäre folgende: An der Anlage, die keine Probleme bereitet, wird Lösungsmittel aufgefüllt, sobald das Reservoir ca. zur Hälfte geleert ist. An der „problematischen“ Anlage wird gewartet bis das Lösungsmittelreservoir fast leer ist, um es wieder aufzufüllen, Ergebnis: Das letztgenannte Handling kann zu unterschiedlicher Konzentration an Störsubstanzen führen. Es ergeben sich womöglich folgende Probleme: Acetonitril-Reservoir Aus Acetonitril kann mit der Zeit Aceton entstehen – und Aceton ist UV-aktiv. Bei geringer Acetonitril-Menge ist die Konzentration an Aceton im Raum über der Acetonitril-Oberfläche hoch, Ergebnis: Leichte Drift, die immer stärker wird Unter Lichteinwirkung können in Acetonitril Polymere entstehen. Bei geringer Acetonitril-Menge im Lösungsmittelreservoir ist deren Konzentration hoch, die Konsequenz lautet: „Buckelige“ Basislinie. Ihre Konzentration bei einem halbvollen Lösungsmittelreservoir dagegen ist gering, das Problem ist nicht existent oder marginal Ähnlich verhält es sich bei geringer Acetonitril-Menge und vorhandenen polaren Verunreinigungen dort wie Nitrile (insbesondere Imine), Acrylnitril, Ammoniak, Essigsäure. In diesem Fall tauchen Geisterpeaks auf. In…
Zur Qualität von Lösungsmitteln für die HPLC – wann, was? Sowohl „Gradient grade“ als auch „LC-MS grade“ sind sehr reine Lösungsmittel – worin liegt nun der Unterschied? Wie die Bezeichnung es ahnen lässt: Gradient grade Lösungsmittel sind speziell für die spektroskopischen Detektoren (Fluoreszenz- und vor allem UV-Detektor) optimiert, sie sind frei von organischen Verunreinigungen. Das Ziel dabei ist es, dass insbesondere bei Gradientenmethoden gegen Ende des Gradientenlaufs keine Geisterpeaks auftauchen. LC-MS grade ist frei von ionischen Verunreinigungen, da ja jene ein verstärktes Rauschen verursachen würden. Ferner würde ihre Ionisierung zum Empfindlichkeitsverlust führen. Organische Verunreinigungen können hier zwar zugegen sein, die…
von Werner Röpke, Braunschweig Das Problem Unerklärliche Druckschwankungen in einem Pumpensystem, die aber nur auftreten, wenn Wasser gefördert wird. Der Kanal mit Acetonitril oder einem ähnlichen Laufmittel arbeitet völlig einwandfrei, so dass ein Fehler an der Pumpe eigentlich ausgeschlossen werden kann. Was könnte hier vorliegen? Die Lösung Jetzt sollte der Pfad des Laufmittels von der Flasche zur Pumpe untersucht werden, denn sehr häufig ist die Ansaugfritte – auch Ansaugfilter genannt – Verursacher des Problems. Stellen wir uns ein typisches HPLC-System mit zwei Flaschen vor, eine ist mit Wasser gefüllt und eine mit Acetontril. Die Ansaugschläuche sind vollständig gefüllt, die Pumpe…
„Was sollte ich denn machen, die hatten nur Vodka…“ Folgende Anekdote eines Kollegen aus den Anfängen der HPLC: Er war um 1980 herum in der Sowjetunion auf Kundenreise. Im tiefsten Sibirien angekommen, wollte er nach einem Kundengespräch als Beleg für das Besprochene auch ein paar praktische Versuche durchführen – manch einer war logischerweise etwas misstrauisch gegenüber Versprechungen aus dem Westen… Damals war es mit dem Zoll noch schwieriger als heute, er konnte gerade zwei Säulen dabei haben, es waren je eine 25 cm lange Spherisorb C8 bzw. Spherisorb CN. Mit MeOH und ACN war natürlich „nichts“, aber Vodka, davon war…
Der Fall In diesem Tipp hatte ich Ihnen einige Faustregeln und Erfahrungswerte vorgestellt, mit deren Hilfe man eigene, der Fragestellung passend generische Gradienten entwickeln kann. Hier möchte ich Ihnen einige Beispiele zeigen, bei Bedarf folgt eine kurze Erläuterung. Diese Chromatogramme stammen im Wesentlichen aus umfangreichen Untersuchungen, die Hans-Joachim Kuss durchgeführt hat. Die Lösung Die ausgesuchten Beispiele befassen sich mit den Fragen „Start % B“ und „Steilheit“ Die oft angewandte Praxis, mit „viel“ Prozent Wasser/Puffer zu starten, ist selten zweckdienlich, denn: Ein Starten mit hohem wässrigen Anteil führt dazu, dass alle Peaks auf der stationären Phase quasi „festgehalten“ und im Chromatogramm…
Der Fall Gradientelution ist den Königsweg bei der Methodenentwicklung einer unbekannten Probe in der RP-HPLC. Ein Gradientenlauf ist ferner der erste – und mangels Zeit oft auch der einzige – Schritt, wenn es um eine schnelle Information geht, so beispielsweise bei der Reaktionskontrolle. Vielerorts haben sich nun sogenannte generische Gradienten etabliert: Ein generischer Gradient ist ein Gradient, der sich für meine, immer wieder zu analysierenden, recht ähnliche Substanzen und meine Zielsetzung als geeignet erwiesen hat. So ist beispielsweise „0,1-0,05% TFA/ACN“ für viele Fragenstellungen ein bewährter Gradient. Über solche Gradienten und Faustregeln, die sich in der Praxis als praktikabel erwiesen haben,…
Der Fall Ca. 70-80% der RP-Trennungen in der Routine sind Gradientenläufe. Den meisten Anwendern sind die Vorteile der Gradientelution geläufig, so z. B: Trennung von polaren und apolaren Komponenten in einem Lauf, merklich kürzere Trenndauer im Vergleich zu isokratischen Läufen, Erniedrigung der Bestimmungsgrenze und nicht zuletzt: Ein Übersichtsgradient ist ein hervorragender erster Schritt bei der Methodenentwicklung einer unbekannten Probe. Was ist nun bei Gradiententrennungen grundsätzlich „anders“ im Vergleich zu isokratischen Trennungen? Die Lösung Isokratische und Gradiententrennungen stellen zwar keine gänzlich andere Welten dar, gibt es doch einige entscheidende Unterschiede. Nachfolgend greife ich stellvertretend zwei Unterschiede heraus. Interessierten Lesern sei auf…